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PREFACE

Stanford Research Institute has been conducting a study of position

location and navigation for the U.S, Marine Corps under Contract Nonr 2332(00).

An important part of this study is the assessment of present and future

systems. In developing criteria for such assessment, considerable diffi-

culty was experienced in locating suitable references for the necessary

mathematical analyses. Further, descriptions of systems accuracy found

in the literature were found to be often confusing, sometimes ambiguous,

and occasionally in error. Thus an extensive effort became necessary to

collect suitable information, to develop additional wethods of analysis,

and to select a uniform method of specifying system accuracy.

This Research Memorandum has been prepared to record these mathematical

techniques us they have been developed and used for the assessment of var-

ious position location and navigation systems. A concomitant result has

been the specification, of useful methods of describing the accuracy of-

position measurements. This memorandum follows a format of presenting

the results with illustrative examples. These are followed by extended

discussion and derivation of formulas in the several appendixes. The

final report of the position location and navigation study is classified.

Since the mathematical techniques developed for this study can be applied

to other types of problems, they have been presented in a separate unclas-

sified volume to permit wider dissemination of these techniques to those

who may find them useful.

Additional volumes dealing with this subject may be issued under this

and other studies as the need arises.

Typographical errors existing in the first printing of this men.orandum

have been corrected in this printing. No other textual changes have been

made in this second printing.
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LIST OF SYMBOLS

LOP Line of position

At a point determined by the intersection of two lines of position

C1 standard deviation associated with LOP 01, measured
perpendicular to the LOP

o2 Standard deviation associated with LOP 02, measured
perpendicular to the LOP

ct Angle between the two lines of position, also (and
equivalently)angle between LOP 1 and LOP 2 as shown
below.

o- F rictitious standard deviation

c• Fictitious intersection aligic

The combination of o*, o@*, and xz represents an
equivalent description of a probability distribu-
tion actually described by @1' or2 and ct.

After transformation of a probability distribution described by C'l, @r2p

and oa to an equivalent distrivution defined in terms of the axes of an

ellipse

@r standard deviation along major axis

c, standard deviation along minor axis
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When distributiuns about several points nre cumbined to obtain an oVeLLrll

distribution, double subscr ipis are used to designate the separate ellipses/

which describe the distributions about each point.

Lil SMLIdard deviation LOP //1.-ellipse 01

Lr2T Standard deviation LOP /92-ellipse #11

Cr 2  Standard deviation LOP /#1-ellipse 112, etc.

After transformation to standard deviations along the axes of the indivi-

dual ellipses.

Standard deviation along major axis-ellipse /,l

a, Standard deviation along minof axis-ellipse //1

o, 2 Standard deviation along major axis-ellipse #12, etc.

al Angle between x-axis uf ellipse #/1 and arbitrary
coordinate axes for combination of ellipses

ci, L, Standard deviations along the arbitrarily selected
a, 2, 0r 2 axes, designated w and z, fo.r multiple ellipse

etc. combination,

pAl, P-2 Cross product function involved with transformation
etc. to w and z axes.

In general discussion of severul ellipses the subscript i is used to

designate the general function. f - 1,2,3 .............

In the final combined ellipse, the subscript f is used.

,;,! / As above for the final ellipse
o"

Pf

a', f Standard deviation along major axis

U Y i Standard deviation along minor axis

6 f Angle between x-axis and arbitrary coordinate axes.

xii
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1. BASIC STATEMENT OF POSITION LOCATION PROBLEM

The basic problem in position location is the determination of' the

coordinates of a remote point with respect to a known or arbitrary refer-

enle. The remote point may be a landing zone for troops, or a target upon

which it is desired to deli ver ordnance. Many other examples will inmedi-

ately come to mind, The problem giving rise to the necessity for .complex

mathematical analysis is the fact that no measurement can be made without

error. Thus, the results of a position determination in fact must be

described in terms of the probability of being within a given distance of

the desired point. Actually, this last statement is in too simple terms:

because more than one error is usually involved in the sum total of meas-

meoats, it becomes necessary to consider the shape of the probability dis-

tribution about the desired point. In general, these probability

distributions are ellipses rather than circles.

A relatively simple problem in position location is given in Fig. 1.

Here is assumed a reference baseline established by the measurement system.

The location of an artillery battery is then measured by the system, giving

rise to an ellipse within which a given probability may be stated that the

artillery battery is actually located. Then, with respect to the same base-

line, a forward observer is located, giving rise to a second ellipse within

which he may be located to a stated percentage probability. From his loca-

tion be makes measurements on a target which then may be located within a

still different ellipse. From this information the dotted line giving

firing orders in range and azimuth is calculated. The weapon effects

ellipse is shown dotted and superimposed upon the target location ellipse.

Then, the problem of immediate interest is to calculate the probability of

damage to the target. Techniques have bfieal established to perform such

calculation when each of the error figures about the various points in the

problem is a circle. However, the use of such circles can be quite mis-

leading when the actual figures are ellipses. In particular, the weapons

effect pattern is commonly a very elongated ellipse', differing greatly

from a circle. It is also characteristic of many electronic measuring

1

'1I*



TARGET ERROR BALLISTIC

ELLIPSE DISPERSION
/ I

MEASURED TARGET
LOCATION

LOCATION ERROR I /

ELLIPSE I
I

"FORWARD /
OBSERVER 

/
/
/

/,.,_..CALCU LATED WEAPON
/ RANGE AND AZIMUTH/

I
/

LOCATION ERROR /
ELLIPSE/

ARTILLERY SITE

',ý -•LOCATION SYSTEM
REFERENCE BASELINE

FIG. 1 BASIC LOCATION PROBLEM



techniques that the results, to be meaningful, must be expre.sed in I.Irms

of e 1 I ipses, Thus it Lbecomes necessary to develop a procedure of anal ysi s

which permits tile consideration of 'ellipses.

A circle is readily defined in terms of its center and a single

distance, the radius. An ellipse requires udditional information-the

center, and two distances to correspond to the radius of a circle-the

semi-miiijor axi s and tile semi-,inor axis. Further, when we are concerned

with more than one ellipse. we must also be concerned with their relative

orie|itations. TYos, any analytical procedure concerned with the end result

of the consideration of a number o.Z error ellipses considers the elements

of each ellipse and the angles of these elements with respect to a common

reference.

Because the detailed consideration of analytical techni.ques concerned

with any single ellipse is itself quite complex, the discussion will detail

first the considerations of a single ellipse of error. Following this

presentation, the method of combining several ellipses to obtain the end

result will be described.

3 5



2. ANALYSIS OF A SINGLE ERROR ELLIPSE

%lost of the position location systems considered in this program

determine the location of a point at the intersection of two lines of

position. Iloweve1', both lines uf position may be in error. Figure 2

shows such tin intersection of two lines of-position. T'he lines of po-

sition in this illustration are range measurements- from two points at

the extremities of a baseline of known length. The measurements of

ranges are reported as some numerical value, However, because of inac-

curacies in measurement, the actual range may not be the indicated value,

but may lie somewhere between the limits shown as additional arcs either

side of the measured line, Thus, one becomes interested in the proba-

bility that the actual point lies within some close distance of the

indicated point.

The intersection of the two lEnes of position together with the

standard deviations associated with each are shown to expanded scale in

Fig. 3. (Standard deviation is a measure of error and is defined in

Appendix A.) Standard deviation as a measure of error is commonly desig-

nated by the Greek letter sigma (o) and the Greek letter alpha (a) will

be used throughout the analysis to designate the angle of intersection of

two lines of position. It can be shown that the contours of equal prob-

ability density about such a's intersection are ellipses centered about

the intersection of the two lines of position. Thus, the ellipse shown

in Fig. 3 might be the 75% probability ellipse, meaning that there is a

75% probabiiity-three chances in four-that the actual position of the

point whose location is desired lies within the ellipse drawn,

The detailed statistical analysis of the diagram shown in this figure

is quite complex. Salient features of the analysis will be stated in the

main portion of this memorandum. Rigorous mathematical analyses will be

found in the appendixes. This main body of the memorandum will indicate

the assumptions made in the analysis of the accuracy of position location

systems and will present formulas, graphs, and nomnograms to obtain numer-

ical results. Typical examples will be illustrated.

Preceding page blank
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II the anulySI S Lo tfo l low o1' tLhvt accul'lacy of JI{iis Liol 10(I ation systurlis

the t'(1 loWing aslsumpt.ionsl have been made:

S( ) All bias errors have buen removed, leaving only the random
c rrors to be analyzed. In mathematical trnms, Lhe mean or
uverage error is assumed to be zero.

(2) These rundom errors are assumed to be normally distributed.
The mathemaulicul imnplications of' this assumption are dis-
C(usced in following paragraphs. This assumption is required
to permit a mllathem|•atical sLatement of' overall accuracy
relationships to be developed,

(3) The errors associated with the two lines of position are
assumed to be independent. This assumption implies that
a charge in the error of one line of position has no effect
upon the other. This assumption permits the analysis to
consider unequal errors associated with the two lines of
position, thus assuring a realistic, mathematical nmodel.

(4) The lines of position are assumed to be straight lines over
tthe small area of interest in the neighburhood of the pointthe
position of which is desired. (See Fig. 3,) This assump-
Lion is valid so long as Lhe standard deviation is smull
with respect to the actual rudius of curvature of the line
of position. I[m the unalysis of systems this is usually
found to be the cuse. Not to make this assumption would
unreasonably complicate the mnathematicul analysis.

(5) The analysis of errors of pusition is confined to two di-
mensions. The third dimension, altitudL, may be considered
separately, if desired, if the syst.em being analyzed is
capable of altitude measurements.

As shown in Fig, 3, the general case of the intersection of two lines

of position at any angle and with different values of error associated

with each line of position results in an elliptical error figure. Simpli-

fied to geometrical terms, the ellipse looks like that of Fig. 4.

From this illustration, one may readily surmise that the exact shape

of the error figure varies with the magnitudes of the two input errors,

Co, and o2, as well as with the intersection angle, (X. The angle a is also

the angle between the two values of sigma because the standard deviations

are mutually perpendicular to their corresponding lines of position. Hlow

these variations may be calculated was the objective of' considerable aria-

lytical effort by the project team after a literature survey indicated the

inadequacy of available techniques.

8I
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FIG. 4 BASIC ERROR ELLIPSE

Hesults of this analytical. effort have given two separate but inter-

related methods of obtaining the desired results. Each will be described

as simply as possible and the necessary formulas given with examples.

Detailed deviations of the formulas obtained may be found in the appendixes.

Using either of the two methods of analysis developed, the end result

is the determination of the probability that the point is located within a

circle of stated radius. The basis of this concept may best be seen by

considering for a moment the special case when the two errors are equal

and the angle of intersection of the lines of position is a right angle,

In this case, and in this case alone, the error figure becomes a circle

and is described by the circular normal distribution. A plot of this

special function is given in Fig. 5. The plot is to be interpreted as

follows: the horizontal axis is measured in terms of RIo,, R being the

radius of a circle within which it is desired to be located, and a* being

the error measure, The errer measure is given simply as o,, for in this

circular case o -M a2' . To illustrate, a measurement system gives a cir-

cular error figure and has a value of a - 10 meters; the probability of

actually being located within a circle of 10 meters radius when Rir - 1.0

may be read from the vertical axis to be 39.3%. To obtain the CEP, the

radius of a circle within which a 50% probability results, the corre-

spon.ling value of Rl/ is seen to be 1.18 from the graph. Thus, for this

example, the CEP would be 11.8 m. The concept of the function R/c- will

be found useful in more complex cases.

9
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2. 1 NWTIIOI) I

Starting with the inputs of Fig. 4, it is assumed that it is possible

to find fictitious values of sigma so that the two differing values origi-

nally given may be replaced by two new sigmas of identical value, indi-

cated as or*. At the same time a new and fictitious angle of intersection

V* is also required. Figure 6 indicates these new values.

T&-* 2L67--115

FIG. 6 TRANSFORMED PARAMETERS OF ERROR ELLIPSE

Also required for use with this first method is a whole set of prob-

ability curves, similar to that of Fig. 5, but with a separate curve for

each value of intersection angle, Such curves have been calculated with

the aid of a digital computer and are shown on Fig. 7. These curves can

be used only when the two error measures tre equal, hence the need for

making the transformation of the previous paragraph.

The values of the functions or* and V needed to utilize the curves

of Fig. 7 may either be computed from the formulas given below or may be

determined from Figs. 8 and 9.

si n 23vu 2 + 2

aresin (sin 2/3 sin a)

11



- •retan (o' o/ 2)

t. hus

20 ,1 2
sin 2 13

C
2 

+2

Tit. derivuaion of Lhese formulas may be found in Appendix D. IL is ob-

ouis t.hut. considerable c:orputation is required Lo use the formulas

directly, hence the curve of Fig. 8 and the nomogram of Fig. 9 will be

fouud to facilitate the use of the formulas.

First one must. calculate the ratio crier1. crI is always taken as

the larger of the two in this fraction, such that the value is always

less than 1,0. With this ratio, enter the curve of Fig. 8 and obtain the

ar factor, Multiply a. Iy this factor to obtain the fictitious function

Q-*, The nomogram of 9 is used -vith the same ratio to obtain the

fictitious angle V*.

A numerical example will illustrate the method of calculation.

Assume a position location system has provided the following data:

cz= 500

Cr 20 meters

C 2 15 meters

What is the probability of the Location of the point within a circle

of 30 meters radius?

Calculate the ratio a 2/o-1 15/20 - 0.75.

Enter the curve of Fig. 8 with this value and obtain the or"

factor - 0.845. Multiply this value by c-: - 20 to obtain o' w 16.9 meters,

Calculate the ratio /r/* = 30/16.9 - 1.78.

Enter the nomogram of Fig. 9 with the same ratio cr 2 /l 1 a 0.75 and with

the given angle 0 = 500 to obtain the fictitious angle CO - 470

The values B/cr* - 1.78 and V* - 47' may be entered on the curves of

Fig. 7 to obtain P , 0.62 or 62%, interpolating visually between the 400

and 500 curves for * 470.

12
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Checking the values obtained from the nomograms by substituting the

figures into the exact formulas we obtain:

2 x 15 x 20 600sin 2[3 - - . 96
225 + 400 625

sin 50 ' 0.766

V* = urcsin (0.96 x 0.766)

arcsin 0.735

47.30 (compared with 470 from

the graphical solution)

0.96w' 62

0,707 x 0.96 x 25

"16.96

B/d* 30/16.96 1.77 (compared with 1A8
from the graphi,'al
solution)

The values obtained from the figures are seen to be sufficiently
accurate for comparative evaluation.

Because the curves of Fig. 7 tend to crowd quite closely together

for some values when the angles approach 90 degrees, Table I presents

the same data in numerical form,

2.2 METHOD 2

A second method of working with the error ellipses starts with a

different transformation. In this method new values of sigma are found

along the major and minor axes of the ellipse according to the formulas

given below. The geometrical considerations are given in Fig, 10.

17
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FIG. 10 TRANSFORMATION TO STANDARD DEVIATIONS ALONG ELLIPSE AXES
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2 

A TIo 2 4 in or10,2J

The complex derivati.on of these formulas is given in its entirety in

Appendix B. Note that these formulas are given terms of variances-

squares of the standard deviations.

After the valuea of sigmia along the orthogonal axes of the ellipse

have been obtained, the reults of computations obtained by Harter (Ref. 4)

may be utilized to obtain desired circles of probability. To utilize

harter's data it is first necessary to compute the ratio c = cy/o, where

; is the larger of the two new standard deviations just computed. flarter

presents tables (Tables II and III) which then relate ellipses of varying

values of ellipticity to the radii of circles of equivalent probability.

The use of this second method will be shown by using the same example

given as an illustration for the first method.
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:.: Tub1e 11

CIR.: 114CUI.AIl IEI1I10Il 111OI3AIB I I IT I EIS I'(K,c)

0.0 0.1 0.2 0.8 0.4 0.5 0.6 o0.7 ,. 0.9 T .o
0.1 -09117.221 0010 . .2 7 W71 .21167 (K)(2294 .0059674 0 108MOM.0 0443987 .00242110 ..0141721 M23875 .037 0.008249971
0.2 i586194 .1339783 .0884533 .0028306 .0482413 .0300193 .0327123 .02)141.0240824 .021767 .010801:1
0 "35828 .2213804 .1739300 .1318281 .1039103 .0851535 .0719102 .0021380 .0540508 .0487030 .0440025
0.4 3108435 .3010228 ,2635181 .2130084 .1742045 .1451808 .1237982 .1076237 .0090495 .0850326 .0768837

V .3 32924 .3755884 .3481790 .3003001 .2532953 .2152880 .1857448 .1626820 .1443041 .1206280 .1175031

U.(o .4514938 .4457708 .4255601 .3846874 .3357384 .2014082 .2548177 .2251114 .2000707 .1811783 .1647298
. .5100727 .5115048 .4000683 .4033258 .41708412 .3609305 .3280302 .2920654 .2029:173 .2381683 .2172955

U. 8 .5762892 5725957 .5604457 .5349387 .4041882 .4474207 .4025028 .3027122 A3283453 ,2980700 .2738510
.0 .,.318797 .6288721 .019154 .65093140 S5B51504 .5213998 .4759375 .4333028 .3053271 .3020135 .3330232

1.0 .089.805 .0802320 .6723586 .0508242 .6291249 .5900053 .5461319 .5025790 .4621421 .4257553 .3934093

.. I .728i679 .72060507 .7202602 .7070081 .6858937 .6524489 .6116310 .5087467 .5272402 .4887873 .4539256
1.2 .709807 .7082215 .7030305 .7532175 .7:359568 .7079073 .0714260 6030)658 .883404 .5498730 .5132477
1 .3 .8063000 .8050048 .8008554 .7029968 7703550 .7567206b .7240673 .0873122 .6474394 .6079822 .5704420
1.4 .8384807 .8374049 .5340018 .8271048 .8160151 .7989288 .7720880 .7383089 .7007900 .6023035 .6240889
1.5 .8063850 .8055127 .80627728 .8577802 .8493071' .8350810 .8129287 .7933002 .7489500 .7122546 .0753476

1.0 .8904014 .8807008 .8875060 .8834914 .8788644 .8657559 .8478.,93 .8226246 .7917194 .7574708 .7219u"27
1.7 .0108601 .9103102 .0850611 .0053760) .0001740 .8915536 .8773110 850•2471 .8201137 .79'17882 .7462539
1.8 .9281114 .9270904 .9203126 .9237989 .0107275 .0180080 .0010110 .8846624 .8613238 .8332175 .8021013
1 9 .94256609 .9422182 .0411299 .0301588 .0359855 09303015 .0222277 .0083609 .8886731 .8039149 .8355255
2.0.. .9544007 .9542272 .0833775 .9818415 .9493815 .9464546 .0388418 :92787001 .9116762 .8001495 .8040047

2.1 .9042712 .9040508 .1034011 .9022127 .9003170 .0573205 .9822909 437008 .9305013 .0122714 .8897495
2.2 .9721931 .9720304 .0715237 .070100 .90691597 .9668845 ,1031017 .9565522 .9459386 .9306821 .9110784
2.3 .9785518 .9784275 ,9080408 .0773450 .9762419 .9745230 .9716034 .0667300 .9583739 .0458085 .0280946
2.4 .9836049 .0835108 .9832180 .9820918 .9818594 .,0805703 .0784061 .0747495 .9882098 .9580804 .9438652
2.5 .9875807 .9875100 .9872900 .98088953 .9862720 .9853112 .0837569 .9810035 .9700522 .0679136 .9560631

2.6 .9900770 .9Q1)024 .9004612 .0901674 .08970471 .0889134 .0878527 .0858331 .9821023 .0756069 .9650525
2.7 .9930061 .9130271 .9029O02 .0120894 ,992:483 .1)91820 , 9944 .9895208 .7530 .9817837 .9738786
2.8 .9948897 9048612 .9147727 :0940141 :0943640 .0939542 .9933821 .9923249 .9902888 .98(4876 .9801889
2.9 .9962084 :9062477 .99061834 .9960684 .99538'8 .09r0126 .9951798 .9944216 .99294)1 9900803 .9850702
3.0 .9973002 .9072853 .9972301 .9971504 .9970200 ,J968294 .9985205 .0959854 .9949214 .9927925 .9888910

3.1 .9080648 .9980542 .9080212 .9970022 ,0978099 .9977206 .9975109 ,.971348 .9903851 .9048168 .9018113
3.2 .9980257 .9080182 .9985949 .9985533 :.0984880 .0983892 .0985•66 .9970733 .9974478 .99063105 .9940240
3.3 .0090332 .9090279 .9090116 .0980824 .0099368 .0088077 .0087607 .90985792 .9W82147 .9974004 .9056822
3.4 .9993261 90,93225 9993112 .0992909 .0992093 .9092115 1 .9091376 .99901291 .9087626 .9981868 .9009113
3.5 .995347 .9005323 .9995245 .9095105 .9994888 .9994559 .9094053 .9993204 .0991502 .0987480 .9978125

3.-a .0996318 .090801 .9096748 .0990053 .0999505 .0990281 .0995938 .9195364 .0994218 .9991442 .9984062
3.7 .9007844 ,9007832 .99977"17 .0907733 .9097033 .9097482 .9097251 .9090807 .9190102 .9094208 ,9080352
3.8 .9998553 1 .9098545 .9908522 .9008478 .9998.112 .9998311 .9998167 - .99790280 .9997390 .9900119 .9982082

3.9 .9090038 .9990033 .)999018 ,099889 .9198945 .99098876 .0098776 .9998608 .9098276 .9907420 .9995020
4.0 .9999367 .9090363 .9990353 .0990334 .9990305 .9990261 .9990195 .9099085 .9998870 .9098309 .9900045

4.1 .9999587 .9999585 .9990578 .999957 , 0 .9999547 .0999 475 .9909404 .9999266 .9908000 .9997703
4.2 .9909733 .9009732 .9099727 .0990720 .1099707 .90989 .. 999001 .999010 .0990527 .9999292 .9908523
4,3 .099829 .)0900828 .9990820 .9009821 .00119813 .9099801 .9900783 .0999754 .9999698 .9909548 .90090:14
4.4 .9999892 .90)99801 .9999889 .99909886 .0999881 .9999874 1 .090863 .9000845 .0999800 .9999715 .9909375
4.5 .0990032 .9099932 .9990931 .9009929 .9990925 .99990921 1 .9990914 .909099'2 .9090881 .9099822 .009500

4.0 .0999958 .9991)57 .9999957 .9990955 .9099954 .9090951 .999947 .9999030 .9999920 .9999880 .9999740
4.7 .O99074 .999974 .0909973 .90)9973 .1999971 . 0999070 .9999067 .999003 .0999955 .90999032 .099008.0
4.8 .9999984 .9999984 .9990084 .9099983 .9990983 .9990982 .9999980 .9999077 .9999972 .9999059 .9)999001
4.0 .9909990 .9999990 .999990 .9990091)0 .9999900 .9909980 .9099988 .9991%980 .9999983 .99099075 .0999039
5.0 .99N94 .9999994 .9099094 .9099904 .9090494 .9999903 .9999993 .9999092 .9990990 .09099085 .0999P)63

5.1 .9999997 .9919997 .9999097 .9099990 .9009900 .9999996 .9999990 .9091099 .9909994 .9999901 .0990)78
5.2 .9909998 .09999098 .991)9998 .9999998 .9991)1 .9999098 .9990998 .9901)7 .0909097 .9909905 .9909987
5.3 .9999999 .9999999 .09999099 .9999999 .9999990 .9991)90 .9M99999 .9999998 .9999998 .999997 .9009992
.4 .9999999 .9999909 .999999 909999) 9009900 .099990 .9999999 .9999099 .9999999 .0991908 .1991095

5.5 1.000000 1.0000000 1.000000 1:0000000 110000000 .1.0000000 1.0000000 .9999099 .9999099 .9990990 .99109907

8.6 1.0010000000 000000 990999 99098
5.7 1.0000000 .9990099
5.8 1.0000000
5.9
6.0

P(N. 0) "..t~ diea. ipot a el 1 Iuý4~~ .'ho am~ ku ut~oinsd whmi "edus Ws K %lgows luget stmandsr devationc, c Weng the iatiof fci sb ma~er
la~id~d davlotion to tUe olhoer etanr Iavietion
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Tlable III

VAILIUES OF K COlIHISPONI)I NU TO FIUMUIA'Ii VEi PHIOBMBI1 LITY P

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 1.0
P _ _ -_ _ _ I _ _ _ _ _

.5000 0674449 0,(8199 0.70585 0.74993 0.80785 0.87042 0.93365 0.99621 1.08769 1,11807 1.17741
.750 1.1503 1 .15473 1.10825 1.19240 1.23100 1.28534 1.35143 1,42471 1.60231 1.58271 1.60521
.9000 1.04485 1.04701 1.05731 1.67383 1.09018 1.73708 1.70162 1.86253 1.94761 2.012W3 2.14B07

.9500 1.959.3 1,6283 1,07041 1.98420 2.00514 2.03586 2.08130 2.14598 2.23029 2.33180 2.44775

.9750 2.24140 2.24365 2.25053 2.26255 2,28073 2.30707 2.34581 2.40356 2,48494 2.58990 2.71620

.9000 2.57583 2.57778 2.58377 2.59421 1 2.00095 2.63257 2.06533 2.71515 2.79069 2.89742 3.03485

.0950 2.80703 2.8. 583 2.51432 2.83289 2,83830 2.85894 2,88859 2,93347 3.00431 3.11073 3,25528

.9975 3.02334 2.02500 3,03010 3.03898 3.05234 3.07144 3.09871 3.13969 3.20580 3.31099 3,40164
,9990 3.29053 3.29205 3.29673 3.30489 3.31718 3.33464 3,3694D 3.39647 3.48698 3.55939 3,71692.

Given:

or 15 meters

0-2 20 meters

50

For the computation the following numbers are needed

- - 225

0-2 = 400

sinl 2  - 0.5868

Substituting in the formula for c-2

2 x225 + 400 + /425 - 4 0.5868 x 225 x 400]
2 x 0.5868

_- 1. [625 + V390,625 - 211,248]
1. 1736

= 0.85207[625 v179,-77

= 0,8521625 + 423]

" 0.852 x 1048

v 893

21



a -- V893 29.9 meters

o 0 0852[625 - 4231Y

0. 852 x 202

172

itt.u thutL Lhu numbers arc Lhe SalIV. m S fOr the (Y2 -a IcuItinoi except for

t th! lli ii u• Sign.

V172 13,1 meters

Y
c •/c. -- 13.1/29.9 =0.438

As ini the example under Method 1, it is desired to determine the proba-

bilitv of locution of this point within a circle of 30 meters radius.

Harter's data is presented in terms of the ratio c, a function K, and

probabi lity. The function K, multiplied by the larger of the two standard

deviations obtained by this transformation method, gives the value of the

radius of the circle of the corresponding value of probability shown in the

table. In the example here, the value of the radius of the circle for

which a probability is desired is given as 30 meters. Thus we may solve

for the proper value of K by the equation:

Badius of circle m K

30 = K29.9

K r 1.003

Then on graph of Fig. 11 (or in Table 11) for K n 1,0 and c - 0.44

(interpolating) read P = 0.62 as was obtained from Method 1,

An alternative presentation of Harter's data is given in Fig. 12

and Table III where the parameters are selecLed so as to provide ready

information about the sizes of circles of specific probability value

associated with ellipses of varying eccentricities. These are convenient

as one often is specifically concerned with the CEP, tLie 50% probability

circle or the 90% circle.

22
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2.3 GIOMETIiICAL, F, tiOi CONS I IDE'AT IONS

From the information that can be derived by using these two methods

of transformation of elliptical error data, one may develop curves which

show for constant values of initial error that the size of a circle of' a

fixed value of probability varies as a function of the angle of' inter-

section of the lines of position.

To simplify the investigation of geometrical factors, it is initially

Lt, sirablC to consider the special case of (r, = UZ = U. Under this special

condition, the long formulas for or= and a- may be drastically simplified

to facilitate computation as shown below

a, a (a•1 a •)

2 sin -2

0r - a (ar a,)
Y 1

2 cos- a
2

Taking the ratio of these two values, a simple formula is found for the

ratio c.

ay 1

or 2

(Detailed derivations for these simplifications may be found in AppendixD.

Utilizing these simplified formulas, significant parameters of error

ellipses have been tabulated in Table IV as a function of the intersection

angle a. Using the CFP curve of Fig. 12, values of the CEP have been cal-

ciulated for each angle, showing that the CEP increases as the angle of

intersection decreases, (The tabulation has been carried out only for

values of' angles less than 90°-the numerical values are symmetrical about

this value of angle.) The last column in the table gives the factor by

which the CEP for angles less than 900 is g.reater than the CEP for a right

angle, This magnification of error curve is plotted in Fig. 13. A similar

computation has been performed for the 90% probability circle as it may

be seen that the curve for this value of probability has a slightly

26



'l'ulil IV

S• I GN I FI CANT PAIRAMIK'I', IOF1
FiH01 I',L p.'.4ES WHEN

a a C K C g fEP 1A(TOl
I y

90 1. 0 1.0 1,0 1.177 1.177 1.0(10
80 1.10 0. 924 (, 839 1.078 1.186 , .01

70(1. 234 0. M8.5 0.7001 , 996 1.228 1.042

0• I.4 1 0. H. 17 0. 577 0,9111. 1 2912 1.099

50 1.i72 0.782 0.466 0,847 1,420 1.206

45 1.847 0,7%6 0,414 0.815 1.508 1.281
40 2.06 0.753 0.364 0.783 1.620 1,. 7 6
30 2.774 0.733 0. 268 0.734 2. 01 1.710

20 4.0(, 0.718 0.176 0.700 2.85 2.42

10 8.11 0.710 1 .087 0.6801 5.52 4.09

Error Factur CE'/1.177

4,0

4.0

S', /
' 3.o

13.0

oA. \,,

0/

S2 .0 - \ • , • 0 ° o I R C E

1 .0 CEP'-50"t,'-,,..V.,,""

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

ANGLE OF INTERSECTION TA-216G?-:22

FIG. 13 CEP MAGNIFICATION vs. INTERSECTION ANGLE
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Table V differing shape from the CEP curve-see

90% CIRCLE ERROR FACTOR Fig. 12. Values are given in Table V. It

a C 90% ENRON is well known in any problem involving

A FACTOR position that the best results are obtained

90 1.0 2.145 2.145 1.C0 when the crossing angle is close to 90',
80 0.839 1.98 2.18 1.015
70 0.700 1.86 2.30 1.07 The curves of Fig. 13 indicate the magnitude
W0 0.577 1.775 2.51 1.17 of the growth of error as the angle varies
50 0.446(1 1.72 2.88 1.34 from 900
,45 0.414 1.702 3.15 1.47
40 0.364 1,687 3.47 1.615 It is also of interest to consider an
30 0.268 1,665 4.53 L.11
20 10.176 1,652 6,72 313 inverse problem-what values of probability

10 0,087 1.645 13.35 6.22 result if the radius of the circle is held

constant at the minimum value corresponding
ItError Factor - 90% B/2.145

to that obtaining for the intersection

angle = 900? An answer to this question may be obtained from the prob-

ability vs. intersection angle curves given under Method 1, Fig. 7.

Along the ordinate l/cr n 1.177 which corresponds to the CEP for the

circular case, one may read the lesser values of probability corresponding

to the various intersection angles. Likewise

one may also obtain the probability values Table VI
PRO9ABILITY DECREASE WITIIcorresponding to holding a circle the size of ANGLE FOR A CIRCLE OF

the 90% probability circle for the circular. CONSTANT RADIUS el " '2

case by using the ordinate R/lo - 2.15 (also a P p

equivalent to 1.83 times the CEP). These two 90 so 90
80 49,4 89.2

curves are plotted in Fig. 14 and the numer- 70 47.5 86.9
60 44.0 82.4

ical values are given in Table VI, It is to be 50 39.5 76
40 37 66

noted that the probability values are not in- 30 25 53
20 17 37

versely related to the error factors plotted 10 8 19
in the preceding curves. The geometric error R -PLe

factor was shown to be a simple trigonometric h 1.93CEP/9_

function; the probability curves are exponen- 90% ProbabilLty at 900

tial functions.
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3. ANALYSIS OF MULTIPLE ERROR ELLIPSES

The tools developed in the preceding section permit the specifi a-

tion of individual error ell ipses about. a single point. As shown in

Fig. I a real problem in pos i ti on - location i nvo I ves the considerat i on of

the combination of errors from a nuinbe r of sources. And us the preceding

section showed, in general each of these various sources of er~ror will be

expressed as an error ellipse. Following the methods of the previous

section, each ellipse can be expressed in terms of the standard deviations

along its major and minor axes. The problem of the combination of multiple

error ellipses is the determination of the proper method combining a

number of individual errors to obtain the total error at somen desired

point. In the general case, the ellipses will not be oriented relative

to one another in any wuy but. a random manner. The exact consideration

of this random orientation of the axes of' the ellipses complicates the

analysis, but it is necessary to obtain accurate answers. More facile,

but approximate methods, sometimes seen in the literature, will be dis-

cussed at the end of this section. Such approximate methods often result

in sizable errors-errors which almost always come oiot in the wrong

direction so that the system appears to be better than it really is.

3 .1 SPECIAL CASE-MUTUALLY PARALLEL AXES

Before attempting the analysis of the general case, it is helpful

to look at the restricted and unlikely case where all the various ellipses

to be cunsidered have their axes mutually parallel. This special case

will then lead to the more general case.

Referring again to Fig. t, there are four error ellipses of interest:

Weapon dispersion

Gun location

Forward observer location

Target location with respect to forward observer.

In a system with these errors we wish to obtain the probability of damage

to the target assuming that the shell must land within a circle of

20-meter radius in order to obtain the desired damage level.
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For- this initial example it is assumed that all the error ellipses

havtv their axes mutually parallel -aligned north and east, for example-

and have the parameters listed in the example shown. Standard deviations

for the two axes of each ellipse are listed. The method of obtaining the

tuoil error at the target is to obtain the sum of the variances in the

two directions and to convert these sums to the standard deviations of the

total error ellipse at the target. The desired probability may then be

obtained by Method 2 of the preceding section. The calculations are

shown in detail.

GIVEN STANDARD DEVIATIONS VARIANCES

Weapon dispersion 3 m 40 M 9 1600

Gun location 10 15 100 225
Forward observer 15 20 225 400
Target location 30 10 900 100

Some of variances 1234 2325

Take square roots of variances to obtain new standard deviations of total

error ellipse at target.

o Y1234 - 35.1 m

0 4 3 48.2 m

From Method 2, Section 2:

c = 35.1/48.2 - 0.729

Radius of circle = Kcrlarger

20 - 48.2 K

K = 20/48.2 = 0.415

Then from the graph of Fig. 11 for K - 0.415 and c = 0.73 (interpo-

lating) read P = 0.11.

In this case of the combination of several ellipses o" has turned

out to be larger than cr,. In such cases the factor K is always to be

multiplied by the larger of the two values of sigma, a. or u to obtain

the radius of the probability circle. The formulas given on Fig. 12 for

simplicity are stated in terms of a-X always being the larger. The
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furmulas assure this condi tion for any single IlI ipso taken aloon without
reference to other ellipses, However, when ellipses ure combined, either

standard deviation may turn out to be the larger.

By way of comparison it is interesting to calculate how much of the

error is contributed by location measurement errors and how much is con-

tributed by the dispersion of the weapon. If we consider the weapon

dispersion ellipse ulone

c - 3/40 = 0.075

Radius of circle - Ko ar I r

20 - 40 K

K - 0.5

Then on the graph of Fig. 11 for K 0.5 and c 0.075 (interpolating)

read P 0.37.,

Thus with perfect location of all elements, this gun with the stated

dispersion (105 mm, mid-range) has a 37% probability of landing a shell
within a circle of 20-meter radius. But, when the three location errors

are combined with the dispersion, the probability falls to 11%.

The numbers shown are realistic for a system of good accuracy and

better than most performance of today.

This method of adding variances along the two axes at right angles,
down range and cross range, is the standard method of preparing an error

budget for a weapon system. The method, however, is not sufficient when
one wishes to combine ellipses having random orientations of their axes.
And since statistical distributions are involved, simple trigonometric

resolutions from one set of axes to another are insufficient.

3.2 GENERAL CASE--ANDOM ORIENTATION OF AXES

In the general case of random orientation of axes in any number of
error ellipses, a more complex procedure for combination is necessary

than that described in the previous subsection. Briefly, a reference

sct of axes must be chosen and the orientation of each error ellipse
with respect to these axes must be determined. Then the variances along

these axes must be computed, a procedure which will also involve cross

product terms (See Appendix B). The special variances and the cross
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product functions may then be added to fIoLruin the; C:ur'o0pUnding f urictLio.is

of the final ellipse. From these two variaurces and the cross irIodur:t,

function of the final ellipse, which are associated with the arbiLrarily

chosen set of axes, final values of a, and ' Y along the major and ininor

axes of the ellipse may be calculated. Necessary formulas are givun

below. Illustrative examples will clarify the description. The labor

involved is considerable for airy real example. For this reason, a corn-

puter program was developed to permit such calculations to be run off in

larg, quantities as a part of the sysLems evaluation program. Derivations

of the formulas presented are to be found in Appendix D.

An example is illustrated in Fig. 15. The three smaller ellipses

are the given inputs to the problem and the large ellipse on the right

represents the combination of the three smaller ones. Each of the three

small ellipses is described in terms of its own or. and or. Also shown are

the angles between the x-axis of each ellipse and the arbitrarily selected

reference axes which are designated the w and z axes, To obtain the

parameters of the final ellipse, variances for each ellipse along the

w and z axes are calculated. Because the axes are not those of the

individual ellipses, an additional function p., the cross product function

ELLIPSE *1 ELLIPSE *2 ELLIPSE 03 FINAl, ELLIPSE

DESIRED

i15 rn 0'12 " lint V,*u IOt o0M

oy1 •IOta rY a2Om O'y( 320m q't

?-I-21O7-124

FIG. 15 ELLIPSES WITH RANDOM ORIENTATION OF AXES
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is also required for each ellipse. These three functions, then two vari-

ances and the cross product function, from each ellipse are then added

to obtain the corresponding funct ions in the final ellipse. Functions

for the final ellipse are designated with the second subscript f. These

three functions in the fin, ellipse may then be converted to the 0r,f

and U-of that ellipse along its major and minor axes. The calculations

are tabulated for this illustrative example an the next few pages, fol-

lowing the listing of the necessary formulas. The probLem illustration

gives all intermediate values needed but. dues not show every individual

calculation required.- The extensive amount o.f work necessary for such

a simple problem clearly shows the need for a mechanized computer eolution.

The simple problem illustrated requires an hour or more of hand labor with

tables and slide rule--the computer handles it in three seconds.

The necessary formulas for this calculation are given below without

derivations. Further discussion and derivations will be found in Appendix E.

The formulas are given in general notation using the letter i to represent

the general ellipse. In the use of the formulas, f - 1,2,3,,..n according

to the number of ellipses involved. The formulas are moat conveniently

expressed in terms of some auxiliary functions which are computed first.

Define cos" a. sin •i

Ar2 + 2

cas 2 0. sin 2 0.

B. =
q-2 C12

YL X L

C1=sinO 01Cos (1i

Then

C
O.i =

0'2

L (1 - P)A

02 1

i )B
$i (1 - p2 )Bt
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These last three formulas give the variances and the cross product function

fur each ellipse in terms of the w and z axes. These are then combined

according to the next three formulas to obtain the corresponding functions

for the final ellipse.

-2 0,a -2

a
2  

2I2 f 2 t-2
if t

P't C. CT (P-a'.i Q,' )
cr f a •:=

uf I f

We now have the parameters of the final. ellipse in terms of the w

and z axes, To eliminate the cross product function p. and obt ain c-,,

0f along the major and minor axes of the final ellipse, we use the

formulas below.

[0 _ -2 + C72 + 2 2 2•,.-• (2f w f 3f V oI f f If

[0+2 + a 2 )2 - 40./ c, 2 (-P
C'2 (a + o- 2!,)2_40C-2 2l p.2l

Y- 2 wf -f of X -f f if f

The orientation of the final ellipse with respect to the w and z

axes is given by the formula below.

2 p.fo" ,or

t a n 2 6 . 2--

(. 2  - 0'2
uf if

The numerical example follows.

GIVEN ELLIPSE #I ELLIPSE 02 ELLIPSE #3
CON! ) T ION S

m 15 M 10 m lO M

lYL 10 M 20 m 20 i

01 450 600 1500

CALCULATED

2
1 225 100 100

2 100 400 400
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2o00 0.2500 0.7500

ai
2

G050 0,7500 -0.2500

si , o 0.5000 0.4330 --0.4330

0.022 0.0002500 0.007500

2

sn2 90.005000 0.001875 0 .0006250

2

A. 0.007222 0.004375 0.008125

2

Cs0.005000 0.0006250 0.001875

0.00 9222 0.007500 0.002500
2

B. 0.007222 0.008125 0,004375

A5.216 x 10~ 3.555 x10~ 3.555 x 10o

VAB0.007222 0.005962 0.005962

10.1000 0.002500 0,002500

10.004444 0.01000 0.01000

1 0,005556 -0.007500 -0.007300

Y L al

C. 0.002778 -0.003750 0.003750

pt0.3849 -0.5451 0,5451

0.1481 0.297ý1 0.2971

1- Pý 0.8519 0.7029 0,7029

2 626 252175.1

162.6 175.232.

16. 151 2.

12.75 mt 18.03 im 13.23 m

12.75 m 13.23 mn 18.03 m
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2 162.6 U 2  162,6

325.2 175.1

175.1 325.2

662.9 662.9

a1,1  25.74 m 25.74 m

I - [0.3849 x 12.76 9 12.76

f 25.7,1 25.74- 0.5451 Y 18.03 × 13.23

+ 0,541 - 13.23 x 18.03]

-x 0.3849 x 162.6
662.9

62.58
-- 0.09441
662.9

P - 0. 0089132

(1 - p) - 0.991096.8

Substituting these values of 9rf, as, tand p, into the formula for cT!

o- [66 62 .9 + 662.9 + (662.9 + 662) 4 4 662 (

5325,8 4 / < 6 66299r 900008913]
•! 2

1

1 [1325.8 + 125.21
2

1
- x 1451
2

u 725.5

vf5 2 .5 = 26.93 m

1

0 2  -1 [1325.8 - 125.21
• Y! 2

- X1200.6 600.3
2
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0' " 600.3 = 24.5 m

ton 20 6 2 x 0.09441 x 25.74 x 25.74
662,9 - 662,9

numerato~r

0

arcton uc 901

2 0•f 900

450

The computer solution of this same problem gives answers differing

only by one in the fourth place, thus confirming the results.

Because of the labor involved in the foregoing calculations, some

references have indicated that errors may be combined by converting each

error distribution to the CEP at that point according to Method 2 and

then combining the individual CEP values root-sum-square. This method

almost always has been found to give too small a value of the CEP at the

final'ellipse. Conversion to individual circles eliminates the effect

of orientation of the ellipse which is an important consideration in

combination. To illustrate, the same three ellipses used in the pre-

viously lengthy example will be handled by this simplified method and

compared with the answer obtained by converting the final ellipse to a

CEP.

ELLIPSE #1 ELLIPSE #2 ELLIPSE o3

O0X 15 10 10

cr. 10 20 20

C 0.667 0.50 0.50

K 0.956 0.870 0.870

S14.35 17.4 17.4

CFP 2  206 302 302

Sum of (CEP's) 2  206
302
302
810

CEP of final location e V81 28,45 m
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Now compare this with CEP of final ellipse as just computed

a . 26.93

M 24.5

SC - 24.5/26.93 0.948

K . 1.144

CEP - 1.144 x 26.93 = 30.8 m

The error in this case is relatively small while the simplified

method gives an answer that is 8% too small. Other sample calculations

indicate that errors of up to 20% can occur using this simpli,fied method.

Approximate calculations of the CEP are discussed in more detail in

Appendix A.
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APPENDIX A

MEASURES OF ERROR

1. INTROD)UCTION

This appendix describes the various terms used as measures of error

in more detail than the discussion in the body of this Memorandum. In

addition, other terms often noted in the pertinent literature are defined

and related to the terms used in this report.

The reader is cautioned to read analyses of systems accuracy with

care. The literature examined by the SRI project team in the progress of

this study sometimes contains numerical errors, More serious, however,

incomplete or mislea.ding defi nitions of terms are often found, and, occa-

sionally, incorrect defi|nitions have been noted. In other references it

may be impossible to tell exactly what was meant. by a particular measure

of error. The discussion of measures of error in this appendix is in-

tended to help clear away such misunderstanding and confusion.

2. ONE DIMENSIONAL ERiROR TERMS

Although the basic problem of position location is concerned with the

two dimensions necessary to describe an area, one dimensional error inea-

seres are commonly applied to each of the two'dimensions involved. In

fact, its shown in the discussion in the body of this memorandum, it is

most convenient to do this to permit a truly general, approach to the con-

siderution of error ellipses. Thus the measures of error concerned with

one dimensional ofGaussiun distributions are important. The following

terms are frequently met and each is described in following paragraphs:

standard deviation, RMS error, sigma, probable error, and variance.

2.1 STANDARD DEVIATION, RMS EuiOi, SIUMA (o')

The three terms all mean the same. The basic equation of the normal

distribution indicates the use of the Greek letter sigma from which the

shorthand use of sigma foi standard deviation arises.
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X a

I " 2•2 (zti)2

f(x ) " -

Standard deviation of a measuremennL system is a property that may be de-

termined experimentally. If a large number of measurements of the same

quantity-u length, for exampl -- are made and compared with a standard,

the standard deviation is the square root of the sum of the squares of

the deviations from the mean or average value divided by the number of

aicusurenient.s taken. Symbolically, this oaperat i1n is represented as

S(xn -I

nI1

Tile term rms (root-mean-square) error comes from this latter method of

computation.

Numerically, one sigma corresponds to 68% of the distributiohý that

is, if a large number of measurements were made of a given quantity, 68%

of the errors would be no greater than the valuni of one standard deviation.

Likewise 2a corresponds to 95% of the total errors, and 3or to 99.6% of

the total errors.

2.2 PI'lOBA BIE EIHIHO1•

This term is identical in concept to standard deviation when con-

sidered as the rms error determined after a series of measurements. The

term differs from standard deviation in that it refers to that value

corresponding to the median error; no more than half the errors in the

measurement sample are greater than the value of' the probable error.

Linear probable error is related to standard deviation by a multiplying

factor. One probable error equals 0.6745 times one standard deviation.

Probable error is used in Army artillery manuals as a measure of weapon

component errors, such as the range and deflection errors associated

with a particular weapon and ammunition. Industrial practice in the

United States also employs the probable error when a measurement is re-

reported in the manner of 173.23 ± 0.05 ft. The 0.05 ft. is to be
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interpreted as a probable error of the measurement. Probable error has

not been used in the analynses of this study fur it is not as convenient

an error measure to handle mathematically as the standard deviation.

2.3 VARIANCE

This term is met most frequently in detailed mathematical discus-

sions. The term refers to the square of a standard deviation. It is

useful in simplifying the algebra of some complex mathematical deriva-

tions (see Appendix B foi- examples). It also is a convenient concept

when preparing an error budget made up of. many separate components of

error for the in.dividual variances may be added directly to obtain the

total variance.

3. TWO-DIMENSIONAL ERROR TERMS

Terms similar or ilentical in words to those used for one-dimensional

error descriptions are also used with two-dimensional or bivariate error

descriptions, However, in the two-dimensional case, not all of these terms

have the sane meaning as before and considerable care is needed to avoid
confusion.

3.1 STANDARD DEVIATION OH STIMA

These two terms, used interchangeably, have a definable meaning only

in the specific case of the circular normal distribution where , =

82

P 1 - e 202

In the case of the circular normal distribution, the standard deviation

o, is equivalent to the standard deviation along both orthogonal axes.

Because we are here concerned with a radial. distribution, the total dis.

tribution of errors involves different numbers from those of the linear

case. In the circular case, I a error indicates that 39.3% of the errors

would not exceed the value of the I cr error; 86.4% would not exceed the

2o-error, and 98.8% would not exceed the 3 o, error.

Because the usual case where there are two-dimensional distributions

is that the standard deviations along the two axes are different, resulting
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in an iti ipt LicilI distribution, tLh circular standard deviation is less

usefiul than thVi, linear stanidard deviation. It is more common to describe

two-dimensional distributions by the two separate one-dimensional stan -

dard deviations associated with each error axis. References often do not.

make this distinction, however, referring t.o the position accuracy of a

system as "600 ft. (2 o')," for example. Such a description leaves the

reader wondering whether the measure is circular error, in which case

the numbers describe the 86% probability circle, or whether the numbers

are to be int.erpreted ats on,-dimensional sigmu-i along each axis, in which

case the 95% probability circle is indicated (assuming the distribution

to be circular, which actually it may not be). The analyses of this re-

port have, in general, used the two separate linear standard deviations

as error measures. Where specific circular measures have been used, they

are so noted carefully to avoid confusion. (See next subsection.)

The term RMS error when applied to two-dimensional errors, does not

have the same meaning as the standard deviation. The term is often used

in the literature, although it has an ambiguous meaning in relation to

terms of probability. For this reason ita use has been deprecated in

this study, The term is discussed separately in a following subsection.

3.2 CEP (CIRcULAit EiIaiont PIROIIABLE -.. AI.SO SOMETIMES

CPE, CIMCULAR Pu•OIBA•Lt E tilic)

In a circular normal distribution this term refers to the radius of

a circle containing 50% of the sample of the individual measurements be-

ing made, or the radius of the circle inside of which there is a 505%

probability of being located. This is a common measure often used with

weapon sysltems and position location systems.

The term CEP is also ustd to indicate the radius of a circle inside

of which there is a 50% chance of being located, even though the actual

error figure is an ellipse (Fig. A-l). The body of the Memorandum de-

scribes the method of obtaining such CEP equivalents when given ellipses

of varying eccentricities. Curves and tables are furnished to perform

this calculation. In the literature, despite the availability of these

curves and tables, approximations are often made for t.his calculation of

a CEP when the actual crr'1r distribution is elliptical. Several of these

approximations are indicated and plotted for comparison with the exact

curve in Fig. A-2. Of the various approximations shown, the top curve,

the one which diverges the most rapidly, appears to be the most commonly
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C o/
S,~TA - 2167- 12.6

FIG. A-1 ERROR ELLIPSE AND CIRCLE OF EQUIVALENT PROBABILITY

used in published systems analyses. Use of the curves and tables given

in the body of this Memorandum is recommended to avoid such problems of

approximations.

Another factor of interest concerning tile relationship of the CEP to

various ellipses is that the area of the CEP circle is always greater than

tile basic ellipse, Calculations made using the values of the tables given

in the body of the Memorandum are

Table A-I given in Table A-1 where it may readily

COMPARISON OF AREAS OF 50% ELLIPSES be seen that the divergence between the

OF VARYING ECCENTRICITIES WITH AREAS actual area of the ellipse of interest
OF CIRCLES OF EQUIVALENT PROBABILITY and the circle of equivalent probability

increases as the ellipse becomes thin-
Sab AREA OF AREA OF

50% ELLIPSE EQUIVALENT CIRCLE ner and more elongated. This fact

0.0 0 1.43 provides a powerful reason for the
0.1 0.437 1.46
0.2 0.874 1.56 method of analysis used in this study
0.3 1.31 1.76
0.4 1.75 2.06 of considering the ellipses directly,

* 0.5 2.08 2.37 especially when a number of ellipses
0.6 2.62 2.74

: 0.7 3.06 3,12 are involved in the determination of
0.8 3.49 3.52
0.9 3.93 3.94 a final probability figure.
1.0 4,37 4.37
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1.2~~ - . - -

1.9 11

1,0LES LEACUACCRAE
APPRROXIATTONN 4

0- _ __ y

SLIHTL LEASS CUAE'

I-

0.9 E ACCURATE

" MA PPA TK I IO N I'\ E

SLIGHTLY LESS •/r

0..7•

-STRAIGHT LINEr APPROXIMATION
0. 0.615 o- o .52o-62 or-,

/ I VERY ACCURATE

WHEN O-y/O- > 0.3

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

TA 2111-127

FIG. A-2 CEP FOR ELLIPTICAL ERROR DISTRIBUTION APPROXIMATIONS
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The v ffleet. ri I' cohivuIs i onl of' ct i prmes Lo the equIi vil 101L CEiP va luem

iS we tL I ~i US irtedm i 1) th' Combi til n i oil of 1, I Ii pser4 of' di f Fereiit- o1. i elitul-
i ntis, . two vqiia I el.Ii psIs whose re Lto Live Or i etil tt ioni is 9 0 ') arer rc.'r-

billed , die restilft is it ui it: e As ment ionied in the l ust suct.i on of I he

body of the Memot andorn, combnd. iriion of' (liipses i~s momet.imecs cucui coLued

hy coirvelt. i g eachi indivi dually to its equ ivalient CET, anid thien romlbiti-

rig tho ioividuf CE(111 .P voiries Ilint. .mlil-sIIuoo. rh,, miimple exampie show,

huvrt iiidijctit's tfiit ~i co~lsidierorhie diegree, of errol ran result fromt such

ai cotmb illaLionI of' 5(111) t-elt.I oh tajitivd CLP vui I s wfiem compav ed w ith the

CEP obtained from11 the combinijed figure.

ELLIPSE 1/ ELL IPSE #/2

1. 1 a-X L0

010 (r

c 0. 1 G 0.1L

X 0.681 K =0.681

Cyi -CE Kor7 x 2

Ili each case CLIP =6.81. If the two values of CEP are
comrbinted ro ,ot-su ar-squuru th le result'is 6,81 /2 9.65.
If we neow combine variarices tv obtain the combination,
Lhe results are:

c,.2 1 a-2 . 100
x y

0, 2  100 02 =1

0,2 .101 0. 2 .101
xf y f

cr f 10. 04 0-Y 10.04

Thus, the Final figure is a circle.

FC 1 .0

K 1,177

CEiP 1,177 x 10.04 11.9.
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This fi gure is the :orruct. onie anid thu' answer obtained
by comb ina t. ion of i d i v idua I CII) va t ti! is i s
I -(9.65/ 1t,9) t9% Lout) low.

The vulue of the CElP miy be re lated to that' radius of other values of

probability circles unal tytically for the case, of the ciircular normal dis-

tribtLion by solving the busic equation for various values of probability.

For this special case tlf thu( circular normalI distribtttioni theac relation-

ships are shown drawn to scale i i Fig. A-3 witLh the associiared values

tabulatnd in 'Table A-2.

50%

60%- 70 YO.-

SA - 216 7- 128

FIG. A-3 RELATIONSHIP BETWEEN CEP AND OTHER PROBABILITY CIRCLES
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'rhe deriit.ion of these values is Table A-2

shown in the following analysis. First, AKIArlONSIII1 1 HETWEEN CGP AND HAIII

the factor relating the CEP to the OF OTIIEH PHOBABILITY CIHCI,ES
OF TIlE CIRCULAR NORMAL. DISTRIBlUTION

circular sigma is derived, then, as a

second example, the relationship be- MULTIPLY VALUE OF TO OBTAIN HAI)IUS OF
CEP BY' CIRCLE OF~ PRHOBABILITY

tween the 75% probability circle and 1.P 60 A1.150 60%
the circular sigma, The ratio be- 1,318 70%

1,414 75%
tween these two values is then the 1.524 80%

value shown in Table A-2 for the 75% 1.655 85%
1.823 90%

valie. 2.079 95%
2. 578 99%

Circular normal distribution equation is

P(R) e 2o2

a nd

CEP m P(R) 0,5

S2"
I - e 2 = 0.5

_R2_

2
e - 0.5

Take natural logarithm of both sides

2n e 2 In 0.5

R12
-- ,- In 0.5

2or2

- = In 2 (In 0.5 In 2)

Ra a221n2 - 3

11 = 1 .177o

In = log e natural logarithm

In 2 0.6931.
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For the 75% probabi Ii Ly circle

p2

_JL•

1 - e 2•'i , 0.7

2
2or 0.25

In (e2) In 0.25

2cr
2

R2 cr -In 4

R I . 6665 c

R7 5 1,.6 6. " (
-. ... _ 1.414
R50 1. 177u

The factors tabuluted in 'l'uble A-2 are sometimes used in th-e litera-

* ture to relate varying probability circles when the basic distribution is

* not circular, but elliptical. That juch a procedure is inaccurate maybe

seen by the curves of Fig. A-4. These curves were prepared from the val-

ues of Table III in the body of the Memorandum. It may be seen that the

errors involved are small when small ellipticities are involved. But the

errors increase sigNificuntly when btoth high values of probability are

desired and when the ellipticity increases in the direction of long, nar-

row distributions.

3.3 C 0 H H E L A'I I UN CO F'VI CI ENTY

In many statistical references the presence of a cross-product term

is indicated as a correlation between the two variobles, such as zIand z2

As used in this statistical sense the term correlation does not imply

that the variables z, and z2 are connected in any physical way. The two

variables are independent and a change in one does not affect the other.

The factor p (rho) which appears in equations r'elatinlg multiple ellipses

to an arbitrary set of axes is that factor often called the correlation

coefficient in statistical literature. Becausr' correlation can be
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1 I Il I I I i i i i
3,S

R TIMES CEP VALUE
GIVES RADIUS OF HIGHER
S% PROBABILITY CIRCLE

3,4

3. 2

3.0

2.8

R

2.6
99%

2.4

2.2

95%

2.0

i's

1.4 5

0
0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1.0 1.1 1.2

C- Ir -0*

To - 217-129

FIG. A-4 RELATION OF PROBABILITY CIRCLES
* TO CEP vs. ELLIPTICITY
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mi S i lat, 131tip ru t (d il.-r il I Yr i ig a priys i f!u I r i [It I! re II Ur i oil si ii 1 witi ch (I: dos riot.

OLie ir Ily eXist., tile usc of, Oile t~e re has biccil liVivi dci ill Lhiis MLtIAy, de

spi te the conrsequrent need far tife ci recugi lctrw iii o iil o C "OS cr -p roruc Ito rrni

Thie terii c'urre lution is ali so used iii sottit of' tire re ferecries tor iridi

catef tile c'aser when there is a'nri irelI cirip betWeeI Life two viiriurb I o,
a coridi tiari that. obLu irits i I sofire ph iryiIr SYSLUilIS wircro Lwo s igniu Ls mary

be synch ron ize.d to ai t-iii .ni iert roll (ilustL be very Cola fir whenl irsing tii

Lu ri to insurre a prorper iiiiilrs Ltirdring of' tike ulra tltironri I. i CHs. livc111se Uhe

terilm corr'elatLi on i s I-hui H H jribici L o pos ~ sible 1 i fo si on ii rd uoni.iruid c Li u.,

its use when referring to it cross-prodrrct Ltel ill 10A been avoided in this

study. When it occurs, it will refer solely'to anl actuul physical inter-

relationship.

3.4 RAD IAL oiH IMS Eniltoii, d,

The terms radial error, RMS error, arid dra are identical in meaning

when upplied to two -dimiensionialI errors, Figuire A-5~ ii lustraves the defi.

nitiori of d r It is seeni to ho the square ro00L ci' Ului Suit of tire squures
of tile one sigima err' or cumipoiieii s aloang the mai~jo)r' t rd minor axes of a

probability ellipse. Tihe figure detai ls tire definition of L d r,,n. Sin

ilarly, other values of d m~any be derived by rusing the corresponding

vuirres of sigma. Tile uivrusure ( is not eqrrtr t~o tihe square root of

fire 3~uui Ja the sq~ua res of' tire cr1 arid o-2 thu t. are the basic errors con-

rice td with tire lines of posit ion of' a parrticular posi Lion locaL .uli SVLI

tern. Tire precedures ciosicriA hin Ol e muair jpori't n of' this kMeioraiadumr

arid derived in Appendix 1) nirsl,. fiirst lie uirli ii ed to z,-bt.urn Olhe valu.ýS

shrowrn as (7. and a, i rin Fig. A-S. Tire t~i ice La i-is used as at mreasur'e of'

error, RMIS error, radial er'ror, aid d,,, arie somewhat conifus ring because

they do not. car-respond to a fixed valuce of probability for at gi yen vrrlire

of tile error measure. Tile terrirs cull be conveienlct ly poreltud to other

error mecasures onrly when v.I o Yr rurd Lihe probabi 1i ty f igureý is a ci re le,

Inl the more common ell iptical 1cases, tire probalui 1ity tissue iried wit ai i

fixed value of d,0varies as rr function of tire eccentricity of tire

ellipse. I d,,, is defined as the L'adios o(' Llie circle obtrirrd wlien

,x.I in Fig. A-S and v0' varies 11orn1 Zero to Olle, Likewise, 2 dIm , ý

thre radius of the ci rcle obtai ned when rj, 2 fird ci varies froi.0i zero
Lo two. Values of' the- length ci' the radius d,,,, umay be crilcltated as

shown rit lible A-3~. [rain the~;ce va lues tire associat~ed probahiIi ties may
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ddrms

NN\ N

NN

TA - 216p7- 150

FIG. A-5 ILLUSTRATION OF ROOT MEAN SQUARE ERROR

be; determine~d fr'oml the, talbles of' the Tlablel A-3

b)o ~iy o f, th is allnelX , rhe va ,riu t,io .i()l Ci~ ns ALCU ILAT IONS

of probability a~ssuciated with tihe LEOI F PKOBABILI.IT -
x I 2 (1values I drus. and 2 drine are showl •Y1 I rms r aI,& rhull

inl Lhe- curves ot' Figs. A-6 and A-7. 0.0 1.0 1.000 0. 683 0.()5-1
Fig. A-8 shows Lhe2 •lack of''a conlsta•nt 0.2 1.0 1.00) (0.6h2 0. )5-(

Ss :-h',• y i fe e t 0. 3 1.0 1.,042 0.,676 0.Q6 1r e I al ti o l.l;h i p iln a sO htIy di f iL 1. It I . () 1. 077 0,0671I 0. 966

w a Ile re t h e raitt i o d r, ,IIs/C E P i s 0 .,5 l. 01 1. 1IiB 0 ,66 2 0 . 9 0o t
|)l L~ d gu~zt il s me tlea tle •' 0.6 1.0 1.166 0.050 0.973
pl tt d ga n t he su e me su e f 0.7 1 .0( 1.220 0.6,41 0.977( B I.f 1.0 1.2Ho 0,635 0.980ellipticit~y.': : " Thc three fi_•gu|res shItow 0.9 1.0 1,345 0,6 32 0.,9 B

graphically that• there is not a (:Oil- 110 1.0 1.414 0.632 0,982

stunt value of probability associated
with a single value of d .... I \hi e arms ¢ + C' Y x rsand y

r IlslnlK em ,LJ eacht, h erL~.i
t~his ivuliatiorl is not gr'eat, it is

felt to be unnecessarily conrfulsing. Thus t.}e mlea|sure' d r, • hus n~ot been

used in this stu~dy.

N5•
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016600.650 ,-

0.640
0.

0.630

0.620 - -

0,610 .-

0 1 -

0 0,1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0,9 1.0
TA-2167,.131

FIG. A-6 VARIATION IN drmi WITH ELLIPTICITY I drm1

0.99

>. 0.97
I-M

0.94 ..

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
OT'x2 / O'y

IA - Ri67 -132

FIG, A-7 VARIATION IN d rm WITH ELLIPTICITY -2 drms
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1.45

I drms1.40 .- ' Id ,
lAO I I_ - / .

Iz 1. 30

1.20

1.15,

0,7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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FIG. A.8 dtm$/CEP vs. ELLIPTICITY 1 drms
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APPENDIX B

DERIVATION OF METHOD 2 FORMULAS

1. INTRODUCTION

In the body of this memorandum it was shown that the most gencral

case of analyzing the accuracy of a positioning system resulted in the

consideration of basic input error vectors intersecting at any angle.

Graphs, nomograms, arid tables wereshown that may be used to obtain

solutions to problems of accuracy determination where the lines of posi-

tion do not intersect at right angles. Two methods of solutions were

given there. This appendix presents a complete derivation of the for-

mulas to obtain the standard deviations along the major and minor axes

of an error ellipse. These functions are then used as the inputs to

Harter's method of determination of elliptical probabilities described

at the end of the Method 2 discussion.

The presentation of the Method 2 analysis is given ahead of that

for Method 1 (see Appendix D) because of the detailed discussion developed

during this analysis, which is basic in philosophy to both methods. Also,

some of the formulas developed in this appendix are useful in derivations

of some of the intermediate Method 1 solutions.

Nonorthogonal bivariate distributions arise when the lines of posi-

tion do not intersect at right angles. Such a condition is the usual

condition whatever the type of navigational system used-hyperbolic,

trilateration, or conventional navigation with chronometer and sextant.

Given two lines of position each with its own standard deviation, the

problem is to determine the probability that the measured position is

within a certain distance of the true position. Also of interest is the

inverse problem, to determine the radius of a circle around the measured

position within which the navigator knows, with a given probability, his

true position lies.

An explicit solution for the integral which must be evaluated to

solve these two problems is not possible, but the integrals can be

61 Preceding page blank
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evuluuted by a 'digital computer. The mathematical literature seems to

contain neither tabulated values of the integrals for thie nonorthogor ai

,'ast i0r analysis of nonortLhogonal bivaritte normal distributions.

.Moirial on orthogonal bivuriuto normal distributions is, however, com-

paraLivuly abundant (Hefs. 1-8). In order to avoid the necessity for

performing many integrations by quadratures, a technique has been found

which perwits existing tables of the bivariate normal distribution to be

ust-d to solve the problems listed above. This appendix will derive the

,,-eLssary equations for obtaining cy and o. . The use of these functionsS y

as part of MN-ethod 2 fins already been described. The following appendix

indicates how these same functions may be used, after calculation nf some

auxiliary functions, to obtain solutions from available tables other

than those already illustrated in the body of the memorandum.

2 . STATEMENT OF TIHE PHOBLEM

Consider a general point P whose position is determined by measuring

its distances, r• *and r 2 respectively, from.two points of known location,

Al and S (Fig. B-1). M and S might correspond to the master and slave

stations of a trilateration system. They might also correspond to two

poinLs of known location to which the ranges r, and r 2 are measured by a

ranging system such as a radar, a laser, or an optical rangefinder. M

alid S might be points on the surface of the earth directly beneath two

stars that are being used to determine position by conventional navigation

techniques, using sextant and chronometer. The measurements of distance

are assumed to be normally distributed with standard deviations oI and 0a2

In Fig. 1 concentric circles of rI + o01 , rl, and rI - U, about M and

r2 + a-,, r 2 , and r2 - C"2 about S have been drawn to suggest the normuil dis-.

tribution of tile two measurements of range. If the ; ;: deviations in

range are very small in comparison with their respective .. ges, the concen-

tric circles can be assumed to be straight lines as in Fig. B-2. In this

illustration, coordinate axes uI and u 2 are defined perpendicular to I and

12 respectively, which represent the true lines of position correspondir
to circles of radius rI and r2 in Fig. B-I. Other lines of position have

been added at distances o1 and 0a2 respectively from II and t2- With no

loss in generality, the measured lines of position could be assumed to be
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M $

T-1 67- 154

FIG. 8-1 INTERSECTION OF TWO LINES OF POSITION

U1

U2 V-l (r2 I~e

a c
Z.t

lA - 216'- 7 •

FIG, B-2 EXPANDED VIEW OF INTERSECTION
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produced by conventional navigationtal techniques using sextant and theodolite,

by a trilateration system, or by a hyperbolic navigation system. Random

errors in measurement may cause a measured line of position to be displaced

perpendicular to itself, and the probability that a measured line of posi-

tion 11, will fall with a zone of width du, at a distance u, from the true

line of position 11, is given by

2u1

1 2ev 2

Pl dy1  = e (I)

Similarly, the probability that the other measured line of position 12M

will fall within a zone of width du 2 at a distance u2 from the true line

of position. 12 is given by

2u2

P du2 "T¢

2 ' 2  du2 (2)V ý2To- 2

Note that u, and U2 are measured along the u and u2 axes, which in general

are not orthogonal except under special conditions. The probability that

the measured position will fall within an element of area du,, da2 centered

on the point (up, u2 ) is given by

PA aduldu 2 = pP 2didu2  (3)

The probability that the measured position falls within ati area of any

size and shape, A, is found by integrating the above equation over that

area.

P - fj plPidulda2  (4)

Therefore, in order to find the probability that the measured position

lies within a distance r from th'e true position, the above integral must

be evaluated over a circular area with radius r:
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2 2

2i

A - 1 2 du I ) u 2 , (5)
A ~r

The inverse problem, to find the radius of a circle centered on the true

position within which a measurIt position has a given probability of

falling, is solved by fixing PA in the above equation and solving for

r. Next we shall show how existing tablesi can he used to evaluate the

above nonorthogonal bivariate probability integral.

3. EVALUATION OF 'filE PROBABILITY INTEGRAL

In the above integral u| and u2 are itochastically independent

nonorthogonal variablesi The probability integral will be solved by

first converting to a new orthogonal coordinaLe system with normal ly

distributed variables. However, these new orthogonal variables will

not lie along the major arid minor axes of the ellipse. hlfnce the equa-

tion of the ellipse, expressed in terms of the new coordinate axes of

z1 and :2 will contain a cross-product term in zIz Since such terms

are inconvenient for ready algebraic manipulation, a second coordinate

transformation, consisting of a simple rotaition, will be employed to

remove this cross-product term, The final answers thus obtained will

be the standard deviations uloiig the major and minor axes of the

ellipse.

Neither of the two coordinate transformations alters the shape of

the bivariate probability distribution. After the second transforma-

tion, the resulting probability integral can be evaluated by existing

tables, such as those given in Refs. I through 4.

The first coordinate conversion, illustrated in Figs. R-3, B-4,

and B-5, is from el, U2 coordinates to zt, 22 coordinates. The latter

two axes are orthogonal with z2 coincident with u,. The former two

axes are not orthogonal, and the yj anid Y2 coordinates of the point

are found by drawing two lines through the point parallel to the u
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z U 2

TA -I 1?7'- 136

FIG. B-3 FIRST COORDINATE CONVERSION

and U 2 axes. Thus ul and u 2 coordinates are then found by measuring the

distance fLOr where these lines intersect the u, and u2 axes to the urigin

of the coordinate system. By elementary analytical geometry,

Y = z z (6)

kz 2 + Z1

(1 + k 2 )1/

where k is a constant describing the slope of line of position 12-

S= tan Y (8)

where a is the angle between tho: two lines of position.

It is necessary when converting from one coordinate system to another

to replace the old element of area by a new element of area multiplied by

the Jacobian of the old variables with respect to the new variables.

That is

duI du2  - I dzdz2  (9)
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FIG, B-4 GIVEN CONDITIONS - ERROR ELLIPSE

FIG. B-5 FIRST AXIS TRANSFORMATION
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By definition
{ui % • •(u ,,2) '~UI 'u2 • u2

I \l U2/ U•z~2 1z it 2 1z ý)U2 U

When the indicated partial derivatives are evaluated by partial differentia-

Lion of equations (6) and (7),

-- 2 ) k-- sil a ii)

Therefore,

k
duIdu2  = - dz dz2 (12)

(I + 2 V

4y substituting equtntions (6), (7), and (12) into equation (5)

- ~iLdu du2
A

1 ]2 - 2k '1 '2
2 2 ,2( +k 2  C u 2 (1+k) 2 ,J dzJJe dz, dz 2

n(1 + k A•
(13)

The change of variables has not disturbed the location of any point, and

therefore the circular area over which the integration is to be carried

out is unchanged.

Examination of the exponent shows a cross-product term in zIz22 Only

if k were infinite, corresponding to the special case in which the uI and

U2 axes were perpendicular, would this term disappear, In order to removc

this term, the'following transformation, which corresponds to a rotation

through an angle 6, will be applied:

X X cos 0 y sin 6 (14)
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zL x S i + y 0os 8) (15)

The Jacobian of this trans formation is oil(!, au dxdy can be substituted

for dzldz 2 . By substituting the above equations into th[,( exponent of 3

in equation (13),

L, [2l ) r12 + k2) zo2 -2(__ __ )

2 2 2 12

cr~(l(+ k2) + 2kcr2 sinl cos 6 + k 2 -2 sin 2

+ xy i ]2ko 2(COS2 O0 sin 2 6))

(16)

In order' to elimjinate the cross-pioduct tc&:n in xy, the coefficient of

the xy term in the preceding equation must equal zero. This occurs when

ol(1 - k2 ) + o•(1 + k2)
cot 22, = (1.7)

21c1

0-- tan ) + 0(2 + t sna )

(17a)

2 tan •r

An alternative form is

C- cos( 2 + C-2

co 
201

cot 2 n (+.7 b)
sin 2w 2

Under this condition ., and y become the semi-major and semi-minor axe, of

the ellipse. (See Fig. B-6.)
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FIG. B-6 SECOND AXIS TRANSFORMATION

In the special case when U, and cy are equal,

*tan 20 k (18)

The slope of line of position 1 2 with respect to line of position 1 is

k-, and if the angle included by the two lines of position is called (X,

then

tan U k (19)

(9 (20)
2

Therefore, when the standard deviations of the distributions of the two

lines of position are tuqual, the major and minor axes of the contour lines

of equal probability oak the nonorthogonal bivariate probability distribu-

tion are midway between the lines of position. (Compare Method 1.)

With the cross-product term eliminated by rotation through the angle

O defined by equation (17) the desired probability is given by
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I - -L2

k 2 7 Y ~2'
2 ý e x dxdy (21)

27r(1 4. vi a 2  A

From equation (16), the variatceos o-2 and LT2 may be found I'rom

[(, 1, k 2,2) co82 9 + 2kcr2 sinll cos 0 + k2cy2 sin2 0] (22)
0*2 0- 2 1 7 k 2  2 1 2 1 1

1 2

( cr2 + 0r2 + kla-2) sin ' 6 - 2kcr- sinl 0 cos 0 + k2U 2 Co., 2 0 ] (23)

-I 02-(l +k 2) 2 1 2

..2 2 6,k 2

Values of a.2 and 2 LA:e needed so that equation (21) may be solved by means

of existing tables of thie bivariate normal distribution whose 'Use will be

discussed ,in the next appendix. Once 6 has been found using equation (17)

the preceding two equations -can be used to calculate a-2 and c-2. It might

be objected that this is a laborious process. Fortunately it is possible

to obtain equations for u2 and o2 as simpler functions of 71, 02a and a.
By adding equations (22) and (23), thus obviating the need for the auxiliary

computation of the angle 6, we obtain

1.1 1 1
-- 1 • - - + -- ()

x y1 2

Also from equations (22) and (23)

0 {(T = Lrc22( 1 + k')} a[o -' o+ k a-a2 - k C, 4c1 sin C cos 2 (0

+ Lk'co- ko_2(o-2  •2 + k2o-20)] Sinl 6 CoS (CoS 2 6 - sin2 6)

+ k,2o•(o + ý+ +2 cr)(min4 , + kos 4 2)- (24)

From equation (17) it follows that

2k+ 
l +

sin 20 = + (26)
+ [-•( -i21 + o•( + k2)
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k•( - ) + %(I + k )
coo 20 = (27)

{[2k,)'] + [ 1(l - k0) + a'( + k0)12}-I

By thesef equations together with the following trigonometric identities

2 sin 0 cos 0 = sin 20 (28)

cos 2 0 - sin 2 0 = cos 29 (29)

I ~and'

sin4 0 + cos 4 0 1 - 2 sin2 0 cos 2 09 (30)

equation (25) can be simplified to

21 + k 2) (31)
Y 1 2

Since

k - tan a (32)

where a is the angle between the two lines of position,

--k sin2 ( (33)
1 +k2

and equation (31) may be rewritten as

2 2
•12C,"2 Or2 1-" (34 )

Y y sin 2

When equation (34) is combined with equation (24),

Q, 2 + 2
a2 + -2  1 (35)

Y sin2

Equations (34) and (35) can be solved for co2 End 472
= y

42 1 0- + U2+ (0,1 r22 A2 21
2 2 '1si 2 1 c2cr](62 sin 2 x
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[,2(L
2 + r 2 /-02 + ,22 - (i 2  221 (

2 si.nO O 1 2

With the aid of tables of squares and squares of sin•s of angles (Be 1'. t0,

for example), these equations may be solved to determine numerical values.

It is to be noted that the equations are in terms of vari ances; to obLu in

standard deviaLions as desired for some calculations square roots must be

taken. It is also to be noted that the formulas for the two desired fun(;-

tions diffe r only in Lhe sign before the radical sign. Thus in noumtriciil

calculation the solution, of one expression provides all the numbers required

for the second.

For the special case when cr I o - 2 equations (36) and (37) may be greatly

simplified as follows:

0-2  = 2 {.2 2 + 4cr4  4 s-in 2 ot 4 } (38)

2 sin2 a

1
S{2"2 + 2c02  1 sin, t) (39)

2 sin 2 a

1(20+ o1 + cos ai (40)
2 sin 2 a

I+Cos 0-2  (41)

sin2  Cx

/ + cos a(
sin a 0' (42)
sina

Since

a I + cos c(Cos • ¢(43)
2 2

sin a sin 2(a/2) (44)

Then

S(45
2 sin -

2
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arid similarly

(7 Y (46)

2 c us -
2

The ratio oa /cr (= c of Method 2, Section 2) is useful in further conver-

sion of the error ellipse to circles of' equivalent probability and may be

readily seen to be

Q

c Lton 1/2 a when CY a 2 (47)

4, ALTERNATIVE FORMULAS

Reference 9 lists the following formulas for or and a'
y

1 2

cr 2  
(C2 + C72) csc 2  a -Cr cot a cesc 20Y 2 1 2

01
2  sin 2ca

tan 20 2-

2

& is the angle between ca- and cr, us in the foregoing analysis,

Although the expressions of equations (36) and (37) initially appear

lengthy, experience has shown that they are well suited to computation.

They have the advantage, too, not possessed by the a l ter'at iV formulas,

of not requiring auxiliary computation of additional functions before the

given values may be entered into the formulas. Equations (36) and (37)

utilize only the basic input data-the errors along the given axes and

the angle between these axes. Available handbooks of mathematical tables

(Ref. 10, for example) contain tables of squares and also of the squares

of sines of angles so that the numerical values needed may be readily

obtained. Although a desk calculator is handy, slide rule computations

are not difficult and are of sufficient accuracy for systems evaluation.
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APPENDIX C

EXAMPLES OF THE USE OF TABLES OF THIE
BIVARIATE PROBABILITY DISTRIBUTION

.1. INTRODUCTION

Reference I contains the most extensive set of tables applicable to

bivariate normal distributions. The use of these tables requires the

calculation of certain auxiliary functions, which are described in this
section. A number of problems illustrating the use of these functions

and tables follow.

Let Pa u2 + a•u -2 t0 denote the probability that a randomly chosen

point will fall inside an ellipse whose equation is

a U + a - t (1)

where ul and u 2 are stochastically independent normally distributed variables

with means equal to zero and standard deviations equal to one. By defi-
nition,

a, + a2 1 (2)

then
P (aj,a' PVa U2 + aa2 - 0 (3)

2~ 2,'t 1 1au + 2u 2

and
1U

P 2 (al' a2; 2• o " - e a, u 2 duldU2 (4)

a Ul2+a'U2" t

where u a.u2 1.

Tables of P 2 (ala 2 :;t) are given in Refs. 1, 2 and 3. Reference 1

gives 120 values of P 2 (a 1,a 2 ;t) to four significant figures, with

77 Preceding page blank
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t . 0,1(0.1) 1.0(0.5) 2.0(1.0) 5.0. (This means that t has intervals of
0.I between 0. 1 and 1.0, and 0.5 between 1,0 und 2.0 etc.) and with
a2 0.5, 0.6, 0.7, 0.8, 0.9, 0,95, 0.99 and 1,00. Reference 2 gives
149 values of P2 (ala 2 ;t) to five significant I'igurea, with t u 0.1(0.1)
1.0(0,5) 2.0(1.0) 5.0 and with a 2  = 0.5, 0.6, 2/3, 0.7, 0.8, 0.875, 0.9,
0.95 and 0.99. Another table in Ref. 3 gives 150 values of the inverse
of a quadratic form in two dimensions, i.e., the value of t which causes
P2 (a,,a 2 ;t) to have a certain value. The values of a 2 are the same as
in the preceding table, and P = 0.05(0.05) 0.30(0.10) 0.70(0.05) 0.95.

Reference 3 gives 2881 values of P 2 (aI,a 2 ;t) to eight significant figures
with t '0. 005(0.005) 0.10(0.01) 1.00(0.02) 2.500.0025) 3.50(0.05)
5.00(0.25) 6.00(0.50) 7.00(1.00) 10.00 and a, 0.5, 0.6, 2/3, 0.7, 0.75,
0.8, .0.875, 0.9, 0.95, 0.99 and 1.00.

•These tables can still be used evon if the two variables do not have
unit standard deviations. Consider two normally distributed variables x
and x with standard deviations a ' and cr respectively. If the bivariate
probability integral is evaluated over the atea inside an ellipse

bix +24 b2 x~ 2 2 (5)
then

2 2

P,(b x2 + b 2 x2 2 -- r2) e- \ I x /dx}dx2
b 

27ro, 
1 

.

2

1 2 +6 x2 r2 (6)

In order that

=r(b 1X2 + b2 }A r2) Pa u2 + a u2 0t} P 2 (a 1 ,a 2 ;t) (7)2 2 2 2

it is necessary that

b x b2 x• r 2

I -- -- - c (8)
a lu 2 a 2u2 t

a2u

where '. * a constant.
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SSince x , x2, P itIt a d II U !u all normal ly dti. Lri buted

2,, U , l

x 2 2

12 U1

- 2
2 2

Y - - (10)

x 2 u 2

Sinice i'U1 lld '(T2 equal une,

•2

21 _ --_ (13)

U2

I

and

x 2
2 2

2 (12)
2

x 2

When bhese Values tire substiLUted into equation (10)

b U2

b <b' 2> -2'2 2

a2 -- (14)
C

ond

C

Since by de~finition the sum of a, and a 2 is oneo,

b ICr b 2 -2AlA b 2
+ :L! (16)

C C

or

C b 0' b(07)

7 x 9 x 
....7

i 

....



There I[ore,

112 2

2 ~ b0 X 2 .2

2~ ~ 2' 221ul

Vb ~ 2  u n aegvn

where ap. a 2 and t Lis function', of 1 b~ 2P X
2 adr 2 regvnb

cqualtions (13),. (14), ( 15), and (16). Thlese equaLiOns diSagree with the

ones given in Ref. 2; as the! above dvrivat~in~i shows, lIe 1. 2 is wrong.

Wheniriequat ic' (20) is subst ituiter into equation (21) of Appendix B,

PJ 1 Z A p2 (a 1 U 2 ; t) (19)
124

Bu t from equati .on (31), Appendix B,

+k2

(r 1 or 1Crr 2(20)
1 1 2

so

Therefore, in the general caSLe, A the probability of being within an

eli 1e 2 2I 2 di=cl 2p 1 a2

elipe 1 22
+ 2 r 2can be read dietyfrom tables of P(ja"

after al, U2 and t have been calculated means of equationis (36) and (37)

of Appendix B3 and (13), (14), (15), and (16). In the special case with

which this memorandum is conce rned, finding the probabi lity that thle true

position is within a distance r of the indicated position, the calculations

are Still simpler. The ellipse becomes a circle, b1)x2 b 2x r2, n

1) b2 (22)

By substitution using equations (35) of' Appendix B3 and

C = -(23)

sin 2 ct
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Fquai it, iS (13) to (15) simpH i fy Lo

"I - I + [1 . .. . . . (24)

2 ( 2

t.2 sin 2 0•
= (26)

1 2

2 PH2IOLEMS

Table C-i sumnniri zes the values of the. given quantities in the di f-

ferent problems and dte resulting, probab.;I1.L-;cs P2 (apa2 ; t). Where possible

dte problems have been checked by use of different tables. As a convenience

to the reader, Tables C-2, C-3, and C-4, abstracted from Ref. 2, are

included at the end of this appendix so that Lhe results presented here

can be verified. 'able C-2 is a brief table of P2 (aa 2 ; t).

Table C-1

SUMMARY OF PROBLEMS
POBLEMS a 2 2 r P2(aj, a2; t

I 900 1 1 1 1 .0.39347
2 900 1 1 1 1 2 0.86466
3 900 2 2 1 1 2 0.39347

4 900 1 1 1 2 2 0.74244
5 900 1 2 1 1 1 0. 21529
6 90' 1 2 1 1 2 0.59009
7 90o 1 2 4 1 2 0.39347
8 90g 1 2 1 4 2 0.32623
9 60' 1 1 1 1 1 0.34230

10 60o 1 1 1 1 V-273 0.24601
11 600 1 1 1 1 V2 0.55620
12 600 1 1 1/2 3/2 1 0.39347
13 600 1 1 3/2 1/2 1 0.34945
14 65o 700 ft 900 ft 1 1 1520 ft 0.77624
15 650 700 ft. 900 ft 1 I 3040 ft 0.99404
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The more exLensiwv tablo of P)2 (a1 ,a 2 ;t) in He', 3 was actually used in

working thes.e problems becausc it has more entries, and tihe interval for

interpolation is smaller. Table 2 can be used Lo integrate (1) a circular

probability distrioiution over a circular ar,.a, (2) a circular probability

distribution over an elliptical area, (3) an elliptical probability distribu-

tion over a circular area, or (4) an elliptical probability distribution

over an elliptical area. A bivariate niormal distribution such as

•2
27UI I2ý

ik x2

is called a circular distribution when o- Crx 2 because the contours of

equal probability density are circular. If c•,r V-,2 the lines of equal

probability derrsiUy. are elliptical and the bivariate distribution i~s

called an elliptical distribution. Thable C-2 can be used to integrate

a circular probability over u circular area, and Table C-3 can be used

(1) to integr.ate a circular probability distribution over a circular area,

or (2) at the expense of entering the table twice, to integrate a circular

probability distribuition over anrellipticul area. Since the latter table

occupies several pages, only those pages needed to work the problems in

this memorandum have been included. As a check, several problems have

been solved using Tables C-3 or C-4 or both as a check an the answer

obtained from Table C-2. Unfortunately not all the problems could be so

checked, because of the inherent limitations of Tables C-3 and C-4.

Problem (1)

Given

a = 900, CrI o . I = I, C 2- 1- b, - 1, b 2  - 1, r - .

Find

P2 (a ,a2 t)

Since the lines of position are perpendicular (a = 90') and their standard

deviations are equal, the probability distribution is circular. The area

over which the integral is taken is likewise circular, (b 1 x•2 + b2x6 2 r2
12

or x + x =) and the area has a radius equal to one standard deviation.
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Table C-2

DISTRIBUTION OF A QUAiRATIC FORM IN TWO DIMENSIONS

. s , .0 0.03516 0.14127 0.25916 0.32068 0.39347

.6 , .4 0,09693 0.18429 0,26306 0,33405 0,39609
2/3, 1/3 0.10033 0.1300s 0,27033 0.34222 0.4064

.7 6 .3 0.102" 0.13491 0.27548 0.34815 0.41276

.75 , .25 0.10814 020233 0.2637 0,35962 0,4468

.68 .2 0.11581 0.21523 04.0112 0,37550 0.4403

.875, .125 0.13544 0.24481 0.33434 0.40844 0.47117

.9 , .1 0.14408 0423941 0.34945 0,42257 0,45315

.95 * .05 0.18130 0.30018 0.38581 0.43206 0.50546

.99., .01 0,23588 0.23308 0.41150 0,4404o 0,$1620

., o.7 oL 1.

.5 , .5 0.45119 0o50341 0455"07 0.59343 0,63212

.6 , ,4 0#45585 0.50737 0.55500 0.59744 0.43570
2/3, 1/3 0*44441 0.51425 00.5273 0.60462 0,64213

.7 , .3 0,47044 0.52205 0054813 O,60032 0.*445"

.75 ..25 0.48206 0,5324 OS7614 0.64163 065423

1 8 .2 0o49678 0.54440 0439009 0263872 00,6297
.87s, .125 0.523s5 0.57011 0060s85 0.44467 0.67540
.9 j .1 0.53423 0,51775 0.61387 0064.10 0.67"48
.035 .05 0.55131 0.59040 0,62440 0.65"m 0.68132
.o9 .01 0055982 0.59615 006"827 0,65692 0,68m64

A . .0 _.0 4.o

.5 , .5 0.77647 0864444 0.350% 1 0.36148 0,3t932

.6 , .4 0.77647 .0.064441 0.94071 009602. 0033227
213, 1/3 0.78108 0,6424 0.34400 0,97773 0.33057

.7 * ,3 0.71Z62 0.86437 0.A412 0.97608 0.98946

.75 , .25 0.786491 0."6255 00,mC44 0.07316 0.98752

.8 , .2 0.71664 0464036 0.93653 0.9464 0.3531

.875, .123 0.78670 0065500 0.32044 0.34434 0.35160

.3 , *1 0.78581 0.05274 0.32695 0.94244 0.98028

.95 , .05 0.78962 0.64764 0692187 0935510 0.97753
," 6 .01 0.76009 0.84374 00.1776 0,35531
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Table~ C-3
CRITICAL, VALUE.S F~OR THE CIRCULAR NORMAL 1) 1S"AIIBUT I(O

A ~_-
0.01 0. L418 0.44 1.1101 0.91 2.1945
0.02 0.2010 0.47 1.1268 0.92 2.2475

0.07 0.24680 0.52 1.2146 0.97 2.3062
0.00 0.8590 0.55 1.1203 0.91 23.021I0oII 0.3518 0.46 L.143" 0.93 2.5373

0.17 0.48105 0.52 L.32116 0.996 2.6455
0o0S 0.4084 0.53 1.2210 0.1277

0.19 0.43492 0.54 1.42"2 0.099 3.03452
0.20 0.4460 0.45 1.2490 0.9912 3.0694

0211 0.4828 0.44 1.4439 0.9993 3.6107
0.22 0.7049 0.67 1.48912 0,9934 3o1512
0.2o3 0.3723 0.54 1.3194 0.995 .3.1969
0.24 0.490.69 1.3305 0.999 343526
0,15 0.57505 0.70' 1.35517 0.9997 4*0276

0.24 0.7740 0.71 1.7135 0.9996 34.07
.0.27 0.6134 .0.*6 1.5951 009998 352515
0.28 0.6300 0.73 1.4102 0. 9999 3.7105
0.29 0.8427 0.74 1.4214 0.90999 3.7452
0.40 0o"844 0.75 164451 0.99999 3.7465

0.31 0.8415 0.76 106894 0o99939 5.2515
0.22 0.8763 0.77 1.7814 0.$99993 3.8361
0.33 0.8150 0.761 1.74092 0.999999 5.8789
0.34 0.91140 0.79 1.7307 0099999 5.7965
0,35 0.7262 0.10 1.7418 0o.99997 4.04278

0.46 0.4460 0.61 1.02235 0.99398 9 4916273
0.37 079341 0.62 1.9519 0.993"199 4.4391
0.38 0.9776 0.63 1.618250199"440

0.39 0.9943 0.84 1.961459993 4.Q
0.40 .096105 0.65 1.G94799099 526

0.41 1.0270 0.64 1.763020999 577
0.343 00416 0.67 2.020099903 .74
0.435 06038 0.10 2.05941099999 60
0.36M AAS76 0.61 2.101190995 .12

0.45 1.0O3 0.01 2.1440

t41 REpRODUjCjBLE
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- I +A cr2 (1)(l) + (l)(2) 2

11 02 x

,, (l)(1) 1

C 2 2

a,c (1)() 2

2 C 2 2

r2

From Table C-2, P 2 (a 1 9 a 2 ;t) 0.39347. This problem can be checked by

Table C-3. This table gives corresponding values of P and 3 where P is

the probability under the circular normal distribution for a given value

of B, and B = r-/o where r is the radius over which the circular normal

probability distribution is integrated, and o is the standard deviation

of the circular normal distribution measured along any axis. For the

values given above, B r'/o0 1/1 = 1.000. From Table C-3,

P B

0.39 0.9943
0.40 1 0108

0.01 0.0l165o

By interpolation,

PB=1.00 -0.39 + 0.005 (0.01) 0.39346
(0.0165)

This checks the value obtained above.

A second check is possible using Table C-4. This table gives q(rd/lo, D/u)

which is the probabllity thas. a randomly chosen point will fall outside a

circle of' rndius r d with center at (D,O) when the underlying probability

distribution is a circular normal distribution centered at the origin and

with its two standard deviations equal to o. Then

(rd, P -,(27)
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whI.t, , •- 2( 2÷ 2

tihe arv o~t(vv'I it w i ch th i s ii tivgrish t a iken,

(x - IJ)J + ,2 = .2 (29)

i ,h ' he e'qult. i ill oL It c i I c ( o f radius rd vUi I ,c ie'd tit (D, 0). If I) i sct

Vuqtal to , er o, rd I and t !e stantdatrd devitai.un of the circular iorin, I

distribution .st equal to 1, then q(r,/lox, D/0) call be read from Table C-4

ulld the desired probabtibli ty found for equution (27). The table of

q (r/dl, flo/) uises (r - D)/u and D/lo as argunuent.S

(1) (0) D 0
1.000 - 0,000

From Table C-3, q(l,0) 0.607, so p(1,0) 1 q(1,0) I - 0,607 = 0.393

which checks the two values previously found,

Problem (2)

U = 90 , or 1  1, cr 2  2 = 1 = 1, b2 1, r 2

F, it d

P2 ( 1 0 a 2; t)

this pohblell uses the same circular probabili t y distribution as was used

in prol'olnl (I), but the distribution is Integroted over a circle whose

'udius is twice the radius of the circle used in problem (1), Consequently

the probability found in this problem should be greater than the probabil-.

ity found in problem (1).

C b Ucr1 b CrY2 2((1) - (I)(l) 2
t I (z)2ix i

a b
(g2 2
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{2
, ~buo ,•J (L)(L) _ Lb C 2 2

2 2

22
C 2

From Ti a l)Iv C-2, P2 (e1 ,aI ; ) 2 P 2 (0.5,0. 5;2) 0.186466

'Tbhis. an.swi'r Ican be chIu:kud by 'Table C-3. B -r/o = 2/1 2. From Table C-3,

hp P B

0.86 1.9830
0.87 2.0200

0.01 0.0370

By interpolu.0ion,

P•- 0.86 + -0 (0.01) = 0.86460.037

A second chck is possible using Table C-4. From the given quantities,

rd "'D (2) - (0)
2.000cy 1

D
- -- 0.000

F1.r 11 thw tahle

q Ž, - q(2.000, 0.000) 0.135

and

( 1 ,) = i -q , ) 1.o000 0. 13 5 * 0.865

Problem (3)

Given

a g 90, O 0 1 =2 , c 2  = 2, b =1, b= , r 2.

€ 88
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2 (a I

. ', (ri 2 ; t )

This upr blvir, is sililair Lu the t'iist prroblem in thUt the probubiliLy dis-

ii hni .. i o li is i rl v 11 ( , i hiilhigi ii t i,4 pr obl I em the c irc Ia r probability

d ti stL'ibU ib on i s W "i ieiv ii d Is iax i 111l is I own v thrin tillve i rcu I ar di stri bu-

tiol iln probl i•n ( I ) . Cullsise tl10e 11'ei1 eVe wlit i h i the ililt gra l is uaken

is in t.re 1s vd iln Ow ,11 -lnVne lrp rt ' ioln as tUeN U lf Slnddird deviation, the prob)-

aiLi I in thi.s prol) eVll is tOWe Sllll, s tile peiloblibi 1i Ly floua d in probilemn (1

C , 2 b2nr
2. (1)(4) + (1)(4) 8

I (1)(4) 1
C 8 2

b r
2

2 cr 2 (1)(4) 1
a-2 C 8 2

2

C 8 2

Front Table C-2, P 2 (a,,a 2 ;t) P 2 (0.5,0.5;0.5) = 0.39347. This answer

can be checked by Table C-3. B - r/= 2/2 1. Foi B 1,

P = 0.39346 as shown above for problem (1). A check by means of

Table C-4 is also possible.

-d (2) - (0)

o 2

D
-~0

Cr

q , ) q(l, 0) 0.607

I(p ) - 1 q -, - = 1 0.607 : 0.393' 0' cr O'
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Pr'of1 I im (4)

G i v o n

Ix 900, "i l, I o2 ' '2 b I, b2 2, r 2

P 2 (al', 2 ; 1

'lThiis proble.m uses the same circular probability distribution as was used

in problelm (I), but the umrea is now e'valuated over an ellipse whose semi-
major axis, 2 units lung, lies along the I axis and whose semiminor axis,

I unit long lies along the x 2 axis, Since the same circular probability

distribution is used in problems, (1), (2) and (4) and the area of integra-

tion in problem (4) is intermediate between the areas of integration used

in problems (l) and (2), the probability in this problem should fall be-

tweun the probabilities found in problems (1) and (2).

( 2 + b C'2 (l)(1) + (2)(l) - 3
1 X 1 2 X 2

b r26 1a2  (l)(l) _

U = -

1C 3 3

Va22 z*2 (2)(1) 2
"2 C 3 3

r 2 4

C 3

P 1) ,a 2 ; t) = 2(12 0.74244P2(l' z~ ) 23' 3' 3

Table C-3 cannot be used because it is applicable only when the area of

integruti ion is circular. Taule C-4 can be used to handle integration of

a circular normal distribution over an elliptical area. Let

P, ' + 62x• < r 2 } denote the probability that a randomly chosen point

will lie within an elliptical area b6X1 + b x2 . 2 when x1 and x are

normally distributed with unitary standard deviations, which is the same

as the integral of a circular normal distribution,with the same standard

deviation integrated over the area defined by that ellipse. Then

Pr4b xI + b2x < r:} 2 q(B, A) - q(A, B)

90
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whi'

wilt/2 /.2\ I II'\a ,z

-i)] - ] + -- 1.707

1"q(B•, A) =q( , .2

Ini order to find q(B, A) Table C-4 must be' entered usi g the values

(rj -DB/cr and D/or for tihe arguments.

111D1
-0.293 - 1.707 = -1414

= 1.707
Cr

LBy interpolation,

q(B, A) = 0.990

q(A, B) = qq "- ) = 1.707 (,.293)

- 1.707 - 0.293 1,414
17

-= 0.293

By interpolation,

q(A, B) = 0.248

Sd 91
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FIiin IIIIV

() 2 1) X •2 ."} q(B, A) - e(A, 11)

- 0.990 - 0.248 = 0.742

'l'hs irhocks the prev iously obtuined value of' P2 (apa ;t)

J)t l, (I ', (5)

Given

a-. 0 - ', = I (T2 V- X 2 -2, b1 =,b 2  1, r =1

Find P2 (aIa.2; t)

Be-a~use tile staundard devialtions of the bivariate normal probability dis-

tribution are unequul, the contour lines of the distribution areellipses

with their muJor axes lying aleng the x 2 axis. The integral of the el lip-

tical probability distribution will be found over a circle whose radius is

one.

b 0. b r2 (1)(). + (1)(4) 5
2 X2

U 2
li k

2(l (1

b C"2a 2 ( 4)(0)
a = = 0.2

c 5

P- (apa2;t) -P2(0.2,0 .8;0,2) 0.21529

Problem (6)

Given

a g o o 9 0 , Gr r = 1 , 02 Cr .2 = 2 , b I 1 , 2 1 ,l r 2

92
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F~ i

Find

P 2 (a Ua 2 ; t)

This is the same as the preceding problem, except that the radius of the

circle over which the elliptical distribution is to be integrated has beerl

doubled.

C -- t l1 + b •2 (1)(l) + (1)(4) = 5

2 x2
al " C - 0.2

a 2  -- = 0.8
C

r (2)2

C 5

P2 (a 1 a2 ;t) 0 P2 (0.2,0.8;0.8) - 0.59009

Problem (7)

Gi ven

= 900, aC = U -i orl 2 O=U 2 =2, b1 -4, b2 = 1, r =2

Find

P 2 (aa 2; t0

The elliptical distribution is the same as in the preceding two proble~ms,

but now the integral of the elliptical distribution is to be integrated

over an ellipse whose major axis is parallel to the major axes of the

ellipses of equal probability density on the elliptical distribution.

C - 2 +bc 2  (4)(1) + (1)(4) 8

a, - = 0.5
C 8

b 2 'c 2  (1)(4)
a =- 0.5
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r 2 4
t 8 0.5

C

P2 (a,,a 2;t) 1'2(0.5,0.5;0.5) = 0.39347

Problem (8)

(ii vt'e

(X 90", 0 1  Cr. 2 or = C- X 2 2, bi 1,1 b 2  4, r - 2

I'i nd

P 2 (ala2; t)

This problem uses the same elliptical probability distribution and the

same elliptical area over which the elliptical distribution is to be

integiated, except that in this problem-the -elliptical area has been..

turned 900 so that its major axis is parallel to the minor axes of the

coutoburs of equal probability density of the elliptical probability

dis Lr ibutiou.

C U b 4.~2  01cr•2  (1)(1) + (4)(4) - 17

bic2 I (i2 I

a1 -,= 0.05882
C 17

b 20`2 (4)(4) 16
a2 C 17 17 0.9412

r 2  4
t - = - = 0.2353

C 17

P 2 (a1,a2,;t) P 2 (0,05882,0.9412;0.2353) 0.32623

ProbLem (9)

Given

600, 1  1, 0-2 1, b, 1, b2  1, r I

F i n d

P 2 (a , a ;t,
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in til of the previous problems the lines of position have been assumed

to intersect at right angles. In this and the remaining problems in this

memorandum, angles of intersection other than 900 will be used. The area

over which the elliptical probability distribution is to be integrated

is a circle of unitary radius centered on the origin, so equations (24)

to (26) can be used.

1 C 2
4(sin2 a)o 1o-2a 2 1 + 2 2

1([ U +1r)2]

=-Ii +1 1- +--
2 ([ + 4 4

2 1 +I n+ 2) 2 + 1r1 4

tI_____also__possi __e tosoveths_ rblm___irtovigor__ n

1d sin e (4)o(' 1, io p

2 
2  (a, 2 + 0,2 2i 8

1 2

P 2 (aDa 2 ;t) ff P 2 (0.75,0.25;0.375) 0.34230

It is also possible to solve this problem by first solving for cr2  and

I a t n tsin t pe

I 2 +i2+ (r + +)-4sn 1 2

- (){l+1 [( + ) -4(1) (1)(1)1 }= 2

1 20- + C1 (0,2 + )2 2 4(sin) 22
x2 2 sin2 2  1 2  1 2  3

From these values, the contours of equal probability density are ellipses

satisfying the equation (x'/2) + (3x /2) k2. The ellipse with k.= 1
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1.5 ~~PROBLEM (13).--y

PROBLEM (10) r =,1.

PROBLEM (12) 2 + -

PROBLEM (9) r I

PROBLEM (11) r = "f,• '0.5

X,-05
-I.B 2 ,0 -O• O..0.0.0

-- 1.5

TA -216-. 140

FIG. C-1 PROBLEM ILLUSTRATIONS

is shown in Fig. C-1 together with the circle over which the elliptical
distribution is integrated.

2 8Cba 2  + b 0 2

2°.2 = 2 +-- 3 3

16 X1 (1)(2)
a = - 8 - 0.75

I C 8

3

2 x2(2 \a1)(
a2 - . 0.25

3

r2 1

= -- 0.375
9 8
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Problem (10)

Given

S 6 0 '., -, 0- c 1, bi 1, b = 1, r,

Find

P2 (a,, a 2 ;t)

The elliptical probability distribution in this problem is the same as

in the preceding problem, and the only difference is that the radius of

the circle over which the elliptical probability distribution is to be

integrated is reduced to 0,8165. This circle is also shown in Fig. C-I.

Therefore a and a 2 are the same as in the preceding problem.

a - 0.75

a2 2 0.25

r 2 3
t - 0.25

C72 + a2 1+ 1
1 2

P2 (a,,a 2 ;t) P 2 (0.75,0.25;0.25) 0.24601

Problem (11)

Given

a z 60o, o"= 02 = 1, bI u 1, 62 m 1, r - r2

Find

P 2 (a 1 ,a 2 ; t)

This problem is the same as the preceding two, except that the radius of

the area over which the elliptical probability distribution is to be

integrated is now 1.414. This circle is also shown in Fig. C-I.

a1  = 0.75

a2  - 0.25

r 2 sin= 
0.75

(ý!+0- c 2  21 n 2

97
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P2  , U2 ;t) P2 (0.75,0.25;0,75) 0.55620

P'rob lem (12)

Given
1 3

U = 600 , 1y -u 1, U 22 r2 2,

i"i nd

P 2 (a1 a 2;t)

This problem uses the same-elliptical probability distribution as the
three preceding problems, but now the distribution is to be integrated

over an area given by the ellipse (x2/2) + (3x'/2) 1. This is the same
ellipse as the contour line in Fig. C-1, where k 1 1. From problem 9,

U 1 - 2 and a*2 = 2/3.
CI b2 2"

t -x (2) + - 2
1 + b2cr 2  - 2) +1 -)

b -((2)

b 2

a1 -- -~--0,05

r
2

t - 0.5
C

P 2 (a,,a 2 ;t) P 2 (0.50-5;0.5) 0.39347

Problem (13)

Gii v en
3 1

a - 600, - 1, "2  . 1, bi -w 62 -- r 1

Find

P 2 (ala2;t)

This problem uses the same elliptical probability distribution and an

elliptical area over which the elliptical probability is to be integrated

98
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that is the same s i ze and shape as the e0 1 iptical area in the pr eceding

problem, except that for this problem the elliptical area has been rotated

through 90'. The relationship of this ellipse to the probability distribu-

tion can be seen in Fig. C-I.

C b i + b 2ib -" (2)(3/2) + (2/3)(l/2) 3(1/3)

U (2)(3/2)
- -- 0.9
C 3(1/3)

b xcr 2 (2/3) (1/2)

C 3(1/3)

r 2  1
C 3(1/3) 0,3

P2 (a, a 2;t) = P 2 (0,9,0.1;0,3) - 0.34945

Problem (14)

Given two lines of position which intersect at an angle of 650 and which

have standard deviations of 700 ft and 900 ft, respectively. Find the

probability that the indicated position is within a quarter of a nautical

mile of the true position.

by the given quantities, a - 650, 0I -= 700 ft., a2 900 ft., b1  l1

b2 1, r = 1520 ft.

114 0 0.7312. + [1 4(0.82139)(700)2(900)21V

r 2  (1520)2(0. 82139) 2.
= 1.460

• + Q-2 (700)2 + (900)2

P 2(a 1 ,a 2 ;t) P 2 (0.739, (.261;1.460) 0.77624
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P'robo I)Ie105)

Given t~he same conditions in the preceding prubiem, but the probability

that Lhe true position is witiiin half a nautical mi le im desired.

aI 0.739

Q2 = 0.261

, r2 sill 2 (3040)2(0.82139)
= 5.84

01 2 + .2 (700)2 + (900)2

. P2 (a 1 ,a 2 ;t) t P 2 (0,739,0.261;S.84) 0.99404
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APPENDIX n

DERIVATION OF METh1OD 1 FORMULAS

I I 1NTR()IIUCT I ON

Method 1, as described in the body of the memorandum, initially
treats th'e special case where • •o. Early in the performance of thi

project the probability curves for this case shown in Fig. 7, Section 2,

were calculated by a digital computer program, However, because of their

limited application, little use could. be made of them until the further

operations involving the fictitious o-* and a' were developed, A step in

the development of these functions was the derivation of an alternative

set of formulas for o and o-r. This alternative set involves the computa-

tion of auxiliary functions which were then found to lead to the formulas

for o- and V,.

This appendix discusses in order the development of the probability

curves P(R/l-,ca); the development of the alternative formulas for c, and

0,; and then gives a derivation for the formulas of Figs. 9 and 10 of

Section 2 that utilizes relationships developed in Appendix B as starting

points.

2. DEVELOPMENT OF P(R/o-, .) CURVES

Given, as in Appendix B, the intersection of two lines of position

at an angle a. Ihowever, this derivation is limited to the special case

where the two associated standard deviations, Qr1 arid c2 are equal. In

this special case, Equation (5) of Appendix B may be simplified to

= --1 •r e-'~ 1/2'2)(U2+U2) dudv .(1)

27Tor2 f f

Since we want to work in orthogonal coordinates we shall proceed to

transform to new orthogonal coordinates • and 77 where the 7 axis bisects

the angle a (Fig. D-1). The choice of this position is to reduce the algebra

later on.

; ~~103 ''Preceding page blank
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FIG. D.1 TRANSFORMATION OF AXES

Take an arbitrary point Q. We want to find its position along the

x and y axis in terms of ý and ', Take the vector m from the origin 0

to Q. m = + 7ql 1 where I and 1 are unit vectors along the 6 and n,

axes respectively.

1, and I are unit vectors along the u and v axes respectively. To

find the projections of m on the u and v axes, we dot it with the respec-

tive unit vectors.

ml 4l si-- 77 COS--

X M ' I + 77 1 -, sin 2 2

(2)

V N1 y 1 + 77% I s i t) + 7 co s -

(3)

2 V sin2
.. + -72 cos 2  (4

104
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2tJ r,2 L . J c 1 .

S2L
d •pL J' ,, ad,rdo (6)

2,n 2

,' 1'' IINI ' 1 i1 I-te r ia , t t•ogot•il ox s 0 1d I ;. To find the probuh ili if.S

iti tIhv t'il'cIe t' Ij l'(I i[Is Ij w( II~t.LgrULC IJ (VCJ Lg L (:tfIr IP2 2
F 111 .1 +72 0t, 82 T

• i -- '' il cxd~d'r, (7)

)•=O h,-'0

1et. 
8

r cos a sin

and

" "I 1 silk C os (9)

d~dJ) 7 J drdk - drd(k (0)
sin 6'

u it(I

alla •Cos2 il
r R I , -(-

fý 22 2 2

We therelore have

r=• i -0. 0 11 2 2 b

j:wj2 II c ua 2

4 277 f.2 ( it ddr (12)
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Performing the first integration

22

7- / - 21 
(1( 1:3)

77

2/ 2 2 a : 2 1'( 4

P0 C
p (i1- ()

or

2 2  
1 .2 P 2 12Sp= 1 - l 7 •\.. .. . i / d s t ( 1 5 )

This integral cannot be evaluated analytically. A solution was ob-

tained by a digital computer program and the results have been presented

in Fig. 7, Section 2, and numerically in Table t, Section 2,

3. ALTERNATIVE FORMULAS FOR o, AND cr

Additional formulas for cr and cr utilizing auxiliary functions were

also developed in the course of the analytical investigations of this study.

The additional formulas are given below, followed by the derivation that is

developed using the methods and notation of vector algebra.

Ssin 2/3cr = •(16)

V7 - /1 - sin2 2"3 sin 2 
a

0 l sin 2/3Yr fi - (17)
SV V1 + ý/l -sin2 2,8 sin2 ot

where

1 2

/3 arctan c2/a

106i 1o1
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v x, cos(ca + 0) x2 sitdlt 0
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No% if (AB) are a pair of vectrors where A = (A 1 ,A 2 )B (BI,B 2 ) note tho

identity:

(AIxI + BIx 2 ) 2 + (A 2 xI + 132 x2 ) 2  . A 2 xI + 2(A 'B)xIx 2 +IB! 2x•

a IxtA + x2B13 (19)

Let

A = [cos 0/0- , cos (a + 0)/ch(

B - [sin 6/gr , Bil (o + 0)/rh]2

Choose 6 so that A ' B 0, that is,

cos 6 sin 0 cos (a + 8) sin (c. + 0)
Y_2 V'

2

g h

or equivalently:

2 22

0 • rctan - tan " (21)

By this choice of 0 with the help of (20):

AIA2tBI 2  = IAX Bi2  (22)•.•
12 JB1 (22)

A A x 0

Define

08 = C(23)

Then (21) may be expressed

0 1 {arctan [cos (2P) tan aý'm) (24)
2

Temporarily define

2

C.2 sin 2 2/3

H cos 20 sin 2 /3 + cos (2a + 20) cos 2 /3
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.then . ....

JA12 G + H and IBI = G- H

Now in principle one could use (24) to eliminate ) from (21). We shall

take a computationally simpler ulternativw, With the aid of (22) we write:

c" t2 I2 BI2 sinp a 4 sin2
- 11 2  1A 2  13 1 2G sin 2 

U/0r
2

oA a4 sin2 2[31 2

Hence

112 G2 2G sin2 a/o.2

nnd

1A12,IBl G 0 2G sin2  /2)/

Therefore

0 1 = [G + (G2 
- 2G sn 2 a/0-2 )%1

12AI i2 2 2 "

IA2 c1B sin2 cs

2 G/c 2

- 0.2 csc2 a [ ± (1 - sin2 2/3 sin2 •)'k

2

1 2 sin2 2/3
2

I 3. (1 - sin 2  2,3 sin2a)Y

By letting a 77/2 we identify in the foregoing "r" with 1/iBl 2 and
with l1IA 12  Finally we note that by (19):

1l/IBA1 2  ax
Y

The auxiliary functions gr and 83 are useful in the formulas for a.* and V

that form the basis for the Figs. 8 and 9 of Section 2. The formulas for

these special functions were originally derived from the just derived
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formulas for o- and ay, A subsequent derivation that starts from formulas

of Appendix B, however, is easier to follow.

Formulas (16) and (17) of this section may be shown to be equivalent
to the equations developed in Appendix B (36) and (37). To do so it is
necessary to substitute the equivalents for o and 0 given in this ex-

pression.

The first step is to square Equation (16) to eliminate one radial in
the denominator as a simplification

02 2 sin2 222
£ 2 1 i - sin2 2/6 sin2 a

Now, substituting

022 0 22 + 0-
2

1 242 2

sin2 2/3

(Cr+ 0.2 n2

1 - sin2
2o-2 + 22)

222 1 +/02c~ + 2 2s nf0. (0,2+ r

12

S+ +2\ 2 2

2o2 +r (Cr2 1(1+ a2 ) -4sn2a-
1 2 12

2(c2 ++.2) 2 sin22 a

110
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t~ o a2 2 2 - ~n~O+2 
V-a +o a22  2 1 2 2

2 2 sin 2 a

(0-2 + C,2) + V(orj + 0-2 )2  4 ~ 2 0.0.

2 sin 2 a

QED

Similarly, except for changes in sign we may show that o-2 from this section
'is equivalent to Equation. (37) of Appendix B.

4. DERIVATION OF FORMULAS USED FOR CURVE AND NOMOGRAMS
IN SECTION 2

In the body of the memorandum, Section 2, these formulas were given
as the basis for Figs. 8 and 9. This curve and nomogram permits the con-
version of unequal o-r and 0'2 associated with the intersection angle t to.
a fictitious pair of equal standard deviations o* and a fictitious in~ter-
section angle V*, Following these conversions, the probability curves of
Fig. 7, Section 2, may be entered.

arcsin (sin 2/3 sin a)

/ * csc 2)3

The derivation starts from Equations (34) and (35) of Appendix B.

In any error ellipse we have

a2 c2

0"20"2  1 2 Appendix B (34) (27)Y j sin2

and

~~a2 + a2 1 2
o2 + 02 = - Appendix B (35) (28)a y sin2 a

S~~111 !,
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We assume that the same distribution may also be described by

fictitious functions a*, a*, and aV Thus substituting in the formulas
f ~ ~above......

a2aO2 (29)
S y sin 2 v *

and

0r2 + -2  20 2 (30)
sin2 a'

equating the right-hand sides of Equations (27) with (29) and (28) with

(30),, we obtain.
0210,2 Co, 4 .. .. . . .[

-rr -(31)

sin2 a sin 2 a *

and
or2 + C-,22,

2 2  (32)

sin2 0 sin 2 a

From the second of these we get

ain a 2  tt (Coj2 + 0,)20-* 2 L (33)

2 sin 2 a

Substituting in the first we get

2 2  sin4 a(Oj +oj2) 2
'1°"2 1i

(34)
sin 2 a 4 sin4 a sin2 a*

4 sin 4 =2o"2

sin 2 a' si (35)

2ar1ac2 sin a
sin a' (36)

cr02 + cr
2

1 2

FromSection 3 of this appendix we obtain the following:

Define

/3 arctan or2 /'! 1  (37)
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sin *2(38)

1 2

uiid

Cos /3(39)
0,.2 + 2
1 2

s i n2J3 (40)r2
cr_ + 0 2

Substituting (40) in (36) we get

sin a* sin 2,8 sin a (41)

arcsin" (.sin .2,8 sin a~) (42)

Substituting Equ~a~ion (41) in the expression for c,.*2 (33).

si2 23sin2 ot(O-2 + cr.2

.1=.(43)

csc2 sn/2 1 2 (4

v es 2,8(46)

21
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APPENDIX E

COMBINATION OF MULTIPLE ELLIPSES

The basic elements of the combination of several ellipses with ran-
dom orientations of their axes have been given in Section 3 of the basic
Memorandum (see Fig. 15), Each ellipse is expressed by its individual

values of o- and o and the orientation angleO With respect to the arbi-

trarily selected w and z axes. The first step in the combination of sev-
eral ellipses is to transform the individual values of o, and a- to values•Y

along the w and z axes. Such a transformation will be shown to involve

also a cross-product function p in addition to the new standard deviations
cr and cr. The necessary transformation equations are the standard ones
for the rotation of coordinate axes.

.w x cos 6 y sin 6

z y cos 0 + x sin

or equivalently,

x t cos 6 + z sin 0

y * z cos 0 - v sin 8

The nriginal distribution in terms of x and y is given by

-I. +2

~x ,y) .,e Y

Substituting the transformed values for x and y, we obtain

(_ C!2q I k1 + (I coo 0 V mi.n 0)2
lC 2 2 & 2 z

f(W,z) -- a
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Considering now only the&exponent of the general expression of an ellip-

tical bivariate distribution, which is

I W 2pwz + 2

2 1 p2)[0-2 ,. : ]2(l 0"- p•) 2r•

one may equate these two exponents and solve for cr., c, and p. First,

multiply out the trigonometric terms in the first exponent

1 FIW 2 c o s 2  0 2 w z s i n 0 c o s 0 22 s i n 2  C9 Z 2 c o g2  0 2 w z s i n e c o o o i 2 s i n 2 9 ]
- -i - + -- + -+

0.2 ~ .20. 012 012

rearranging terms

if 2  - "• sin2 S 0 I1s •: sin+. 2  6 n +cas 2-I;

-1 2 a in 2

The bracketed coefficients in each term may be replaced by A, C, and B,

respectively, to give a simplified expression

1
- - [W 2A + 2Cwz + z2 B]

2

This simplified expression may now be equated to the general expression

of the exponent and solved for the desired functions by comparison of

similar parts.

w2A - 2Cwz + z 2B [W2 _pwz + z2-

W2A

.2 or 2

V2
(I - p 2 )A
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similarly

0.2 N • -

(1- p 2 )B

-2Cwz 
2pwz

Substituting the values obtained above for o and 0,

p(l - p2) A
(1-p• 2 )

pP
C

Thus the formulas for o- o,0 and p indicated *in Section 3 have been de-

rived. The subscript 1. used in Section 3 indicates the particular ellipse

by number where i = 1, 2, 3 ... n.

Following the computation of the functions pertaining to each sepa-

rate ellipse with respect to the w and z axes, it is then necessary to

combine these to obtain the parameters of the final combined error ellipse.

Since the final error is the sum of individual errors, then the moment-

generating function of the final distribution is the product of the

moment-generating functions of the individual distributions (since the

distributions are independent). The moment-generating function for w,

z.i is

i C 2Pg' 2 'v + 1

t m t(tlt 2 ) 2 e 2 I Vi 2 22

Now

1 r[,2,o2 + 22 + *... 0 .. - .
2 ~ "2) 21t( 1 11n(t01 t 2 ) - t mi(t 1,t2) e

+ t+
1 12
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where m(tl,t 2 ) is the moment-generating function of the final distribution

and
, 1 tlCy 2 + 2 2 .

2

I m(tIIt 2 ) e 2 P f 2' u 2 2

Identifying similar parts, we have

0. 2 7- 0'C2

Vf V i

O-2  t .2

ISIC

p.,X P ia- 001301W i. ( m

Having thus obtained the parameters of the final combined error

ellipse with respect to the arbitrary w and z axes, it is further desir'able

to convert to the x and y axes of the final ellipse to remove the cross-

product function p1 . Formulas for this transformation may be found in

Hald, Ref. B.

a" S" - o4- (Hald 19.8.10)"f Y/ "f f f

o 
2 

+ -2  a C7 0- (Hald 19.8.11)
X f f

These equations are identical in form with (34) and (35) of Appendix 2.

Thus the solutions may be given by analogy as

0-
2  - , + -2 +/(2 + o-2  - 4o- a - p2)]

+ . 1 [,2 ", + 0,2 - 4a- ,(l- op2)]

The relationship of the x axis of the final ellipse to the w and z axes

is given by

2pa - a-f I

tan 2Bf (Hald 19.8.7)
(- 2  0- 2

f f
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